Drools Documentation

The JBoss Drools team [http://www.drools.org/community/team.html]

http://www.drools.org/community/team.html
http://www.drools.org/community/team.html

Drools Documentation
by
Version 6.3.0.Betal

... Xiii
IV = [o 4= PP 1
I 1 1 o To U o o1 I 2
0 OO 1o o o 0T i o 1o PP SPPPTTPPPIN 2
1.2. Getting INVOIVEAcooiiiiiiiiii e e 2
1.2.1. Sign UP t0 JDOSS.0IQ oevuriiiieiiiieiie e e e e e e e 3
1.2.2. Sign the Contributor Agreementcooooiiiiiiiiiii 3
1.2.3. Submitting isSUEs Via JIRAcoiiii i 4
1.2.4. FOrK GItHUD ooee e e 5
ST 1Y 11T T =) (= 5
1.2.6. Commit with Correct CONVENLIONScvvvviiiiiiieiiiee e 7
1.2.7. Submit PUll REQUESTEScvuiiiiciii e 8
1.3. Installation and Setup (Core and IDE)coveiiiiiiiiiiiiii e 10
1.3.1. Installing and USINGc.ooviiiiiiiiiecie e 10
1.3.2. BUilding from SOUICEociiiiiieiiii et 20
1.3.3. ECIPSE i 21
2. REIEASE NOLES .oouiiii i et 28
2.1. New and Noteworthy in KIE Workbench 6.3.0Beta l........ccccocciveviinniinnnnnn. 28
2.1.1. Real Time Validation and Verification for the Decision Tables 28
2.1.2. Improved DRL EditOrcociiiiiii e 28
2.1.3. Generation of JPA enabled Data Modelsccccoeiveiiiiiniiiiiiinneeen, 29
2.2. New and Noteworthy in KIE Workbench 6.2.0cccoooiiiiiiiiii i 31
2.2.1. Download Repository or Part of the Repository as a ZIP 31
2.2.2. Project Editor pErmiSSIONSccvuuiiiiiiiiiiii e e 32
2.2.3. Unify validation style in Guided Decision Table Wizard. 33
2.2.4. IMmproved WIzZardsooeeuiiiiiiiiiie e 34
2.2.5. Consistent behaviour of XLS, Guided Decision Tables and Guided
JLICEL 0] o] = (=1 35
2.2.6. Improved Metadata Tabocoeviiiiiiiiii e 36
2.2.7. Improved Data Objects Editorcccoviiiiiiiiiiiiii e 39
2.2.8. Execution Server Management Ulc.cooooiiiiiiiiiiiniiiiiieceieees 41
2.2.9. SOCIAl ACHVILIES ...uuiiiiiiiii e 42
2.2.10. Contributors Dashboardcccoviiiiiiiiiiii e, 44
2.2.11. Package SEIECIONciveicii i 45
2.2.12. Improved visual CONSISTENCYoviiiiviiiiiiiii e 46
2.2.13. Guided Decision Tree EditOrccoiiiiiiiiiiiiiiiieee e 48
2.2.14. Create Repository WiIzardccoooeiiiiiiiiiiiiiiic e 49
2.2.15. Repository StruCture SCreeNcccvvvieiiiieeii e e e e 50
2.3. New and Noteworthy in Integration 6.2.0cooveiiiiiiiiiiiiiiee e 52
2.3.1. KIE EXECULION SEIVET ...uiiiiiiiiieiiiii ettt eeanns 52
2.4. What is New and Noteworthy in Drools 6.1.0ccccovveiiiiiiieiiiiinieciiieeees 54
2.4.1. IMX support for KieSCaNNErc.ccuoiiiiiiiiiiiecii e 54
2.5. New and Noteworthy in KIE Workbench 6.1.0ccccooviiiiiiiiiiiiiiiiccieeees 54
2.5.1. Data Modeler - round trip and source code preservation 54

Drools Documentation

2.5.2. Data Modeler - improved annotationsccceeveviiiinneiiiiineeeeiien. 54

2.5.3. Standardization of the display of tabular datac....ccoeevenn. 54

2.5.4. Generation of modi fy(x) {...} blockscccoeiiiiiiiiiinii, 55

2.6. New and Noteworthy in KIE APl 6.0.0ccoiviiiiieiii e 56
2.6.1. NeW KIE NAME ... 56

2.6.2. Maven aligned projects and modules and Maven Deployment 56

2.6.3. Configuration and convention based projectscccevevveeeiiineenens 57

2.6.4. KieBase INCIUSIONcoouuiiiiiiii i 57

2.6.5. KieModules, KieContainer and KIE-Clccocoiiiiiiiiiiiiiiiicecieen, 58

2.6.6. KIESCANNET ..oieviiiiiiii e 58

2.6.7. Hierarchical ClassLoadercocciviiiiiiiiiiiiie e 59

2.6.8. Legacy API AdapLerccouieiiiiiiii e 59

2.6.9. KIE DOCUMENTALIONiiviieiieeiiieee e e eees 59

2.7. What is New and Noteworthy in Drools 6.0.0cccoeeviieiiiniiiiieciieecies 60
2.7.1. PHREAK - Lazy rule matching algorithmccccooeviiiiiiiiiiiinnenenns 60

2.7.2. Automatically firing timed rule in passive modecccccoeiveviieennnnn. 60

2.7.3. EXPreSSioN TIMEIS ..o.uuuiiiiii ettt ettt e et e e 61

2.7.4. RuleFowGroup and AgendaGroups are mergedcccccvvevvnieennnnnns 62

2.8. New and Noteworthy in KIE Workbench 6.0.0ccccooeiiiiiiiiiiiiiiiiiiees 62

2.9. New and Noteworthy in Integration 6.0.0cocciiiiiiiiiiii e 65
2.9, CDl it 65

2.9.2, SPIING iiiiii e 66

2.9.3. ArieS BIUEPIINTS ...ooeiiiiiiii e 66

I @ 1] TR =T To | PP 66

3. Compatibility MALIIX oo 67
R PSP 68
O | PP 69
I @ V= o T PP 69
4.1.1. Anatomy Of ProOJECESiiiiiiiiiiiii e 69

4.1.2. LITECYCIES ovniiiii e 70

4.2. Build, Deploy, Utilize and RUNc.oiiiiiiiiiiiiee e 71
0 W [1 o To (U T o o H PSP 71

4.2.2. BUIING ..o 74

o T LY o] o)/ T [91

A.2.4, RUNNING ottt ettt e e e e et e et eeeran s 96

4.2.5. Installation and Deployment Cheat Sheetscccocovveviiiiiiiinennnnn. 111

4.2.6. Build, Deploy and Utilize EXamplescoooviuiiiiiiiiiinneiiiineeeciine, 112

G T ST~ Tor 0 PPN 123
4.3.1. SECUILY MANAGETcceevtiieiiiii ettt et eeees 123

[1l. Drools Runtime and LAnNQUAGEoeeuuiiiiiieiiiiei e eeee e e e e e e e e e e et e e et e eaneees 126
5. HYDrid REASONING .oiiiiiiiiii e 127
5.1. Artificial INtelligeNCeccovniii e 127
5.1.1. A Little HISTOMY ..oovuiiiiiiieeee e 127

5.1.2. Knowledge Representation and Reasoningccceeeeveveviineennnnn. 128

Drools Documentation

5.1.3. Rule Engines and Production Rule Systems (PRS)c....cccevvunnee. 129
5.1.4. Hybrid Reasoning Systems (HRS)cccooiiiiiiiiiiiiii e 131
5.1.5. EXPErt SYSIEMS ...ooiiiiiiiiiiiii it 134
5.1.6. Recommended Readingccooevviiiiiiiiiiii e 135

5.2. Rete AlGOItNM ... 138
5.3. ReteOO AIQOItNM ...ovuiiii e e e e e 145
5.4, PHREAK AIQOrithImoouiiii e 146
LSS Y =T g T o [PSP 155
L0 I o T TN = - 1 o 155
6.1.1. Stateless Knowledge SeSSIONccceeviiiiiiiiieiiiieci e 155
6.1.2. Stateful Knowledge SesSioNnc.ccoeeiiiiiiiiiiiiiiiieec e 158
6.1.3. Methods VErsuSs RUIESuiiiiiiiiiiiiiiiii e 163
6.1.4. CroSS ProUCESiiiiiiiiiieii et e e ees 163

6.2. EXECULION CONIOL ...iiiiiiiiei i aeaanas 165
B.2.1. AGENUA ...vuniiiii e 165
6.2.2. Rule Matches and Conflict Sets.ocoviiiiiiiiiiii e, 166
6.2.3. Declarative AQENTAoviiiiiieiiii e 172

6.3, INTEIENCE ... e 175
6.3.1. BUS Pass EXample ..o 175

6.4. Truth Maintenance with Logical ObJECESccoevvviiiiiiiiiiiiei e 177
L T @Y= V1 P 177

6.5. Decision Tables in SpPreadsheetsc.cccovviiiiiiii i 182
6.5.1. When to Use Decision Tablesccccoiviiiiiiiiiiiiiicieeeeei 182
B.5.2. OVEIVIEBW ..oiiiiiiieeeiii ettt e e e e e et e e e e et e e e e ene s 183
6.5.3. How Decision Tables WOrKcccouiiiiiiiiiiiiiiiee e 185
6.5.4. Spreadsheet SYNLAXcccceuiiiiiiiiiiiiciii e ea s 188
6.5.5. Creating and integrating Spreadsheet based Decision Tables 198
6.5.6. Managing Business Rules in Decision Tablescccccccoeveviiniinnnnns 199
6.5.7. RUlE TEMPIALES ...ooviiiiiii e 200

[S 20 0T T 11 o XN 203
7. Rule Language REfEIENCE ... 204
4 T O 1= 4T PP 204
T 1.1 A TUIE FilE e 204
7.1.2. What Makes @ TUIEcocuuniiiiiiiieee e 205

7.2, KEYWOIUS ...ttt ettt e et e e e e e b 205
7.3, COMMENES oottt ettt e e et e e e e e et e e e e e en e nnes 207
7.3.1. Single [IN@ COMMENTcoiiiiiiiii e 207
7.3.2. MUlti-lin€ COMMENT ...uuiiiiiii e 208

T4, EITOr IMESSATESuiiiiiiiii ettt ettt e et e et et e et e e e ena e 208
7.4.1. MeSSage fOrmMalccouiiiiiiii e 208
7.4.2. Error Messages DeSCriptionuuveiiiiiieiiiii e 209
7.4.3. Other MESSAQES . civvuiiiiiieiii et e e e e e aen 213

7.5, PACKAGE «..eeiiiiii e 213
428 5 T 111 o o ¢ (N 214

Drools Documentation

7.5.2. 910DAI .ooii 214

LG T ¥ [T 1o o ISP 216
7.7. Type DECIAratioNccieiiiiiiiiiii et 217
7.7.1. Declaring NEW TYPES ...uciuuiiiiiiieiiieeei e e e e e e e e et e e e e eens 218
7.7.2. Declaring Metadatacc.uuveiiiiiiiiiiii e 221
7.7.3. Declaring Metadata for EXiSting TYPES ...cocvvevviiiiiiiieiiieeieeeeeeiis 227
7.7.4. Parametrized constructors for declared typesocceeiiieiiiiinnenes 228
7.7.5. Non Typesafe ClaSSeSccuiveiiiiiiiii e 228
7.7.6. Accessing Declared Types from the Application Code 229
7.7.7. Type Declaration 'extends’ccuoviiiiiiiiiiieii e 230
A - TR I - V1 T 231

7.8 RUIE e 237
7.8.1. RUle AHINDULES ..o e 238
7.8.2. Timers and Calendarsccoeuuiiiiiiiiiieiiiiin e 242
7.8.3. Left Hand Side (When) SYNtaXocooiviiiiiiiiiieeiiieeeei e 245
7.8.4. The Right Hand Side (then)ccoooiiiiiiiiii e 298
7.8.5. Conditional named CONSEQUENCEScccuuuieiiiiieeieiiinee e 300
7.8.6. A Note on Auto-boxing and Primitive TYPesScccceeveviiieiiinevinneennnn. 302

S T O U= PP PPTUPPTPIN 303
7.10. Domain Specific LANQUAGESuieviieiiii e eee e e e e e e e e e 306
7.10.1. When t0 USE @ DSL ..covuiiiiieiii e 306
7.010.2. DSL BASICS ..eieitiieiiiiiiieeiii ettt e e et e e et e e e e et aae 306
7.10.3. Adding Constraints to FACISiviiiiiiiieiiiiiece e 309
7.10.4. Developing @ DSLciiuiiiiiciie e 310
7.10.5. DSL and DSLR Referenceccoooeuiiiiiiiiiiiieiiieeeee e 311

8. CompleX EVENt ProCESSING ..ciuuiiiiiiiiiii e et e e e e e e e e eanes 315
8.1. Complex EVENE PrOCESSING .. cvvvvnieiiiiiie et 315
02 B (o To (-3 U= o T o PR 316
8.3. EVENE SEMANTICS ..oivuiiiiiiiiiie et e et e e e e e e e et e e e e e aeaeen 318
8.4. Event Processing MOAEScoouiiiiiiiiiiiicii e e e e 319
S 2 T o T I 1Y/ o To [P 320
8.4.2. Stream MOAEcocvuniiiiiii i 321

8.5. SESSION ClOCK ...civiiiiiiei et e e 323
8.5.1. Available Clock Implementationsccooevviiiiiiii i 324

8.6. SlidiNg WINAOWScouuniiiiiii e 325
8.6.1. Sliding Time WINAOWSccovuiiiiiiiiii e 325
8.6.2. Sliding Length WINAOWSc..uiiiiiiiiieiiii e 326

8.7, SIEAMS SUPPOI ittt e e e e 327
8.7.1. Declaring and Using Entry POINtScoooviiiiiiiiiiiiiiiiii e 328

8.8. Memory Management for EVENLScc.ooviiiiiiiiei e 329
8.8.1. Explicit expiration OffSEtoeeiiiiiiiiiiiii e 330
8.8.2. Inferred expiration offSetccooeiiiiiiii 330

8.9. Temporal REASONINGcouuuieiiiiiiiei e 331
8.9.1. Temporal OPEIALOrScceuuieiiiiieiiieeiii e e e e e e e e e e eaneeees 331

Vi

Drools Documentation

[V. DroolS INTEGIALIONcouuiiiiiii ettt e et e e e e e b 346
9. Drools COMMANGAS ..coouuiiiiiii e e e e e e e e e e et e e ean e eees 347
0. L. AP e 347
0.0 L, XSO I AIM ettt 347

L N 1@ | P 347
9.1.3. JAXB et 347

9.2. ComMmMANAS SUPPOIEA ... ceeveeeiiiii ettt 348
9.2.1. BatchExecutionCommandccooeviiiiiiiiiiiii e 350
9.2.2. InsertObjectComMMANTooiiiiiieiiii et 351
9.2.3. RetractCommandcocvuiiiiiiii e 353
9.2.4. ModifyComMMEANDc.ouuiiiiiiiieiiii e 354
9.2.5. GetObhjectCommandcooeiiiiiiii i 355
9.2.6. InsertElementsCommandccoiiiiiiiiiiiii e 356
9.2.7. FireAlIRUIESCOMMANTciiviiiiiei e e 358
9.2.8. StartProcessCommandccoviiiiiiiiiiiiieee e 359
9.2.9. SignalEventCommaNdccuuiiiiiieiiiie e e 360
9.2.10. CompleteWorkltemCommandoceeuviiiiiiiiinniiiie e 361
9.2.11. AbortWorkltemCommandccccuvieiiiieiiiieiie e 362
9.2.12. QUEIYCOMMANG ...vuuniiiiiiieeeiti et e e e e et e e e e e b 363
9.2.13. SetGlobalCommandccoveiiiiiiiiii e 364
9.2.14. GetGlobalCommandccoooiiiiiiii 366
9.2.15. GetObjectsCommandcccocvuiiiiiiiiii e 367

O O B LR 369
0 R 1o T [T o) o PN 369
O B Y o aTo] = 11 o] 1 PPN 369
10.2.1. @KREICASEIU ... ceiiviiiiiii i 369
10.2.2. @KCONTAINET ..ueniiiiieee e e e e e e 369
10.2.3. @KBASE ...cvvneiiiieiiii et e 370
10.2.4. @KSesSion for KieSESSIONccviviiiiiiieieeeeeee e, 371
10.2.5. @KSession for StatelessSKIieSEeSSIONc.uvvvviiiiiiiiiiiieieeeineenas 372
10.3. API Example COMPATISONcccuuuiiiiiiiieieiiie ettt 373
11. Integration With SPriNg ...ccciiiiii e 374
11.1. Important Changes for Drools 6.0cccoiiiiiiiiiiiiii e 374
11.2. Integration with Drools EXPErtcoieiiiiiiiiiiiiii e 374
11.2.1. KieMOAUIE ..o 374
11.2.2. KIEBASE ..uuiiiiiieiiiieiee ettt 375
11.2.3. IMPORTANT NOTE ..ottt 376
11.2.4. KIESESSIONS ..evuiiiiieiiiieii et e e e e e e e e e e e et e e e e eens 377
11.2.5. KieReleaSEIdcouovvniiiii 378
0 TR =T [121 o Yo o U 378
11.2.7. ANNOLALIONS ..ovuiitiit e 380
11.2.8. EVENL LISIENEIS ...civiiiiiicii e e e 384
11.2.9. LOQUEIS . eeiiiitieei ettt ettt et 388
11.2.10. Defining Batch Commandsc.ccoiviiiiniiiiiecieee e 389

Vi

Drools Documentation

11.2.10. PEISISIENCE ..ovuiiiiiieii ettt e e e e 390

11.2.12. Leveraging Other Spring Featurescccoeevviieviiiieiiie e, 391

11.3. Integration with JBPM Human Taskcccoveiiiiiiiiiiiiiece e 393
11.3.1. How to configure Spring with JBPM Human task 393

12. Apache Camel INTEGrationcoouuiiiiiiiiiei e 397
12.0, CAMEI oot e 397

13. Drools CaAmEl SEIVEL ..u.iiiiieii ettt e e e e e e e aaes 400
R 200 I [11 o T [o 1T o T PP 400
13.2. DEPIOYMENT ...t et 400
RS T T @do] 41 o |1] =1 1 o] o N 400
13.3.1. REST/Camel Services configurationcccceeeeviviinniiiiiineenininnnn. 400

14. IMX monitoring with RHQ/JONoiiiiiiiiii e 406
I I [1o T [T o o PR 406
14.1.1. Enabling JMX monitoring in a Drools applicationc.cc.ccuu..e. 406

14.1.2. Installing and running the RHQ/JON pluginccoooviiiiiinniiiinnnnen. 406

V. Drools WOTKDENCRuiiiii e e e e 408
15, WOTKDENCRN e e et e et e e e aens 409
15.0. INSTAlIALION .oiieiiieee e 409
15.1.2. War installationcoovuiiiiiii e 409

15.1.2. WOorkbench datauoviiiiiiiiiiiii e 409

15.1.3. SYSLEM PrOPEILIES ..oeuueiiiii ettt 410

15.2. QUICK STAIT ..t et e e e e e 411
15.2.1. Add rEPOSITONY ..uiiiiiiieeeeii et e 411

15.2.2. Add PrOJECE couniiiiiiii e 414

15.2.3. Define Data MOdelooveeiiiiiiiii e 418

15.2.4. DefiNe RUIE ..oovuiiiiii i 421

15.2.5. Build @nd DeplOycooeeriiiiiiiiiiieie et 424

15.3. ADMINISITALION ..oiivtiieiiiii e et e e e e e e et e eeene 425
15.3.1. AdmINIStration OVEIVIEWvviuiiiiieiieee e e 425

15.3.2. Organizational UNitc.coiiiiiiiiiiiiic e e 425

15.3.3. REPOSIIOMNESiieiiiieiieii et 426

ST @do] 1) o U] =1 (o] o KN 428
15.4.1. USEr ManagemeNtccuuiiiuuniieieiitieee et ee e et e eaneeees 428

15.4.2. ROIES oeiiii e 428

15.4.3. Restricting access t0 repoSItOriescuvveviiiiiiieiiiie e, 430

15.4.4. Command line config toolcciiiiiiiiiiiii e 430

TR ST [0110 o U T 1o] o PP 431
15.5.1. Log in and 10g OULiiiiiiiiiic e 431

15.5.2. HOME SCIEEM ..oviiiiiiiiei et e e 432

15.5.3. WOrkbench CONCEPLSccuviiiiiiiiicii e 432

15.5.4. INnitial TAYOULcoiiiieii e 432

15.6. Changing the [ayOut ..o e 433
15.6.1. RESIZING ..eeiiiiieiiiie ettt 434

15.6.2. REPOSItIONING ..oevuiiiiieiii e e e e e e e e e eaaees 434

viii

Drools Documentation

15.7. AUTNOTING .ot 436
15.7.1. Artifact REPOSITOIYuiiiiiiiiiiicii e 436
15.7.2. ASSEE EAItOr ..oevniiiii e e 438
15.7.3. Project EXPIOTErcvvuniiii e e 442
15.7.4. Project EQItOrccouuuuiiiiiiiii et 452
15.7.5. Validationcoovveiiiiiiii e 456
15.7.6. Data MOEIIEToiieiiiee e e 458
15.7.7. Categories EditOrcouiviiiiiiiiiee e 485

15.8. Embedding Workbench In Your Applicationcccoooiiiiiiiniiiiiiinneennnn, 487

15.9. ASSEt MaNagEMENT ...uiiiiiiiii e 488
15.9.1. Asset Management OVEIVIEWoveiieuunieieiiiieeeeiineeeiieeeennens 488
15.9.2. Managed vs Unmanaged RepoSItOriescocccveveivieeiiiieiinneeinnnns 488
15.9.3. Asset Management PrOCESSESocivvuieeiiierieiieeeiieeeeeeneeenans 489
15.9.4. USAQE FIOW ...covniiiici e 491
15.9.5. REPOSILOrY SIUCTUIE ...o.uuiiiiiiiii et 492
15.9.6. Managed Repositories Operationscccoceeviveviieeiiiieiiineeenneennn 494
15.9.7. REMOLE APIS .o 499

16. AULNOTING ASSBIS iuiiiiiiiiii e e e e e e e e et e e e e e et e eeanaaes 500

16.1. Creating & PACKAGEuuiiiiiiiiee et 500
16.1.1. EMPLY PACKAGE ...cevniiiiiieiii e 501
16.1.2. Copy, Rename and Delete Packagescccocceviviiiiiiiiiiiineiinnenns 502

16.2. Business rules with the guided editorcccooviiiiiiiiin e, 504
16.2.1. Parts of the Guided Rule Editorcccoovviiiiiiiiiiiie e 504
16.2.2. The "WHEN" (left-hand side) of a Rulecccoveiiiiiiiiiiiiines 505
16.2.3. The "THEN" (right-hand side) of a Ruleoooiiiiiiiiiiiiiiinnnn, 509
16.2.4. Optional attributescoiiiiiiiiii e 512
16.2.5. Pattern/Action toolbarc..ovviiiiiiiii 512
16.2.6. User driven drop down liStSccooviiiiiiiiiiiiiiccieeee e 512
16.2.7. Augmenting with DSL SENtENCEScccvviiieiiiiiieieiiiieeee e 513
16.2.8. A more complex eXample: ... 514

16.3. Templates of aSSEetS/IUIESocoiiiiiiiiiii e 515
16.3.1. Creating a rule templatecooooiiiiiiiiiii e 516
16.3.2. Define the templateooveiiiiiiiii 516
16.3.3. Defining the template dataccccccoiviiiiiiii i, 517
16.3.4. Generated DRLoovvuiiiiiii e 521

16.4. Guided decision tables (web based)cccoooviiiiiiiii 523
16.4.1. Types of decision tableoiiiiiiiiiiii e 523
16.4.2. Main componentS\CONCEPLSvvvneiiiieiiieeiie e e e e e e 524
16.4.3. Defining a web based decision tableccoooooiiiiiiin 527
16.4.4. Rule definitionoiiiiiiiiiiii e 542
R T A U Lo 1 o o PP 543
16.4.6. Real Time Validation and Verificationcccceivviiiiiiieiiiiinnennnn, 545

16.5. Guided DECISION TIEESciutieiiieiiie ettt et e e e e e een s 546
16.5.1. The initial editor [ayoutccccuieiiiiiii e, 546

Drools Documentation

16.5.2. FIrSt SEEPS ..ieiiiiiiiiiii ettt 548
16.5.3. Editing Data Object NOAEScc.veiiiiiiiii e 549
16.5.4. Editing Field Constraint NOAEScccuuiiiiiiiiiiiiiiiiiee e 550
16.5.5. Editing ACtiON NOAESccovniiiiiiiiiie e 551
16.5.6. Managing the treeo 554
16.6. Spreadsheet decision tablescccccoiiiiiiiiiii i 556
G S Yoo =T o= T o £ 557
16.7.1. (2) Setup Parameterscccoveiiiiiiiiiicii e 558
16.7.2. (D) CharaCteriStiCSuiiiiiiiiieiiiie e 559
16.8. TESE SCENANO .vvuiiiiii et e et e et e et e et e e et e e et eeeeaa s 561
16.8.1. Knowledge SesSion Selectorccovviiiiiiiiiiiiiiecii e 563
16.8.2. GIVEN SECHON ...uuiiiiiiiieiiiiie ettt eeaans 564
16.8.3. EXPECE SECHON ..oevviniiiiiii et 564
16.8.4. Global SECHONiiiiiiiieiei e 565
16.8.5. NEeW INPUL SECLIONccovviiiiiiiie e 565
MG IR T U] od 1o) o F PP 565
16.00. DSL @ILOT .vvvuiiiiiii e et e e e e e 566
16.11. Data enumerations (drop down list configurations)cccoeevvviveinnns 567
16.11.1. Advanced enumeration CONCEPLSccuurerirriiieriiiinieeeiiineeeeiinnne 568
16.12. Technical rules (DRL)uuiiiiieiii e e 569
17. Workbench INtegration ... e e 571
L7, 0, REST i 571
17.0.0. 30D CallS ooeiieiee e 571
17.1.2. RePOSItOry CallSouiiiiiiiiiieii e 572
17.1.3. Organizational unit CallScoviiiiiiiiiiii e 574
17.0.4. MAVEN CallS ... 574
17.1.5. REST SUMMANY ..niiiiiiiieieiieiei ettt e r e e e e e e eae e 575

18. Workbench High Availabilitycoooiiiiiiiii e 577
200 PP 577
18.1.1. VFS CIUSIEIING ..uevviiiii it e e e e e e e aen 577
18.1.2. JBPM CIUSLEING ..eeevviieiiiii et e e 580

[V N =Rt =T PP 581
19. KIE EXECULION SEIVEL ittt ettt e e e e e e e e e et e e e e e ennas 582
I T O [g1 1 o T [Tox 1T o TP 582
19.2. Installing the KIE EXECULION SEIVETcccuuiiiiiiiiiieiiiii e 582
19.2.1. Installation details for different containerscccceevvvviviinneeennnn. 583
19.3. REQISIEIING @ SEIVET ...ciiitiieiiii e 584
19.4. Creating a Kie CONLAINETc.uiiiiiiiiiii e e e e e e 584
19.5. Managing CONLAINEISuuiiiiiiiieiiii et 585
19.5.1. Starting @ CONtAINETuiiiiiiii e 585
19.5.2. Stopping and Deleting a Containercooevevviiieiieiinneieiiinneeenen 586
19.5.3. Updating @ CONLAINETovevuiieiiiieeiiieeei e ee e e e e e eaneees 586
19.6. REST AP oo 586
19.6. 1. [GET] /e e e 587

Drools Documentation

19.6.2. [POST] /et eeeeeeeeeeeeeeeeeee 587
19.6.3. [GET] /CONLAINEISuiiiiiciiie e 587
19.6.4. [GET] /containers/{id}coouuiiiiiiiiiiiiii e 588
19.6.5. [PUT] /containers/{id}cccoeuniiiiiiiiii e 588
19.6.6. [DELETE] /containers/{id}oooeuviiiiiiiiii e 589
19.6.7. [POST] /containers/{id}c.ooeiiiiiiiiiiiiie e 589
19.6.8. [GET] /containers/{id}/release-idccccooeiiiiiiieiiiiiniiii, 589
19.6.9. [POST] /containers/{id}/release-idcccoceviviiiiiiiiiineee e, 590
19.6.10. [GET] /containers/{id}/SCANNErcoveiiiiiiieiiiiiieeeiiieeeeei e 590
19.6.11. [POST] /containers/{id}/SCannercccoeeviieeiiieeiiiicciieeee e, 590

VI DroolS EXAMPIEScoeiiiiiiiii ettt ettt e e e e e 592
20, EXAMPIES ittt 593
20.1. Getting the EXamMPIES ... 593
20.2. HEllo WO ...ouiieiiie e 593
20.3. State EXAMPIE ..o 599
20.3.1. Understanding the State Examplec.c.cccovviiiiiiii i 599
20.4. FIbonaccCi EXample ... 606
20.5. Banking TULOMALuuiiiiiciie e e e e e e 612
20.6. Pricing Rule Decision Table EXampleccooveiiiiiiiiiiiiinieiiiieeeiieeees 625
20.6.1. Executing the examplecccooeiiiiiiiiii e 625
20.6.2. The decCiSion tablecooviiiiiiiii e 626
20.7. Pet Store EXAMPIE ..uiieiii e 628
20.8. Honest Politician EXampPleoooeiiiiiiiiiiiii e 639
20.9. SUdOKU EXAMPIE ... 643
20.9.1. SUAOKU OVEIVIEW ...evuiieiieiiiieiiie e et e e e e e e e e e e e e een s 643
20.9.2. Running the EXample ..o, 643
20.9.3. Java Source and RUleS OVEIVIEWcc.uveveuiiiiiiieeiieeiiiieiiineeaieeas 649
20.9.4. Sudoku Validator Rules (validate.drl)cccooviiiiiiiiiienn, 649
20.9.5. Sudoku Solving Rules (sudoku.drl)ccooeeiiiiiiiiinniiiiieceinn, 650
20.10. NUMDBEE GUESS ..ieviieiiiii ettt et e e e et e e e e e s 651
20.11. Conway's Game Of Lifec.uuiieiiiiiiiiiii e 658
b0 2 01 V7- Vo [ORI 665
20.12.1. INVAdErSIMAINcveviiiiieei e 666
20.12.2. INVAAEIS2MAIN ...ceeveieeiiii et e e e e e e eaanns 667
20.12.3. INVAdErS3MAaUNcceuiiiiiieiii e 667
20.12.4. INVAAEISAMAINooviiieiiiii et aeaenas 668
20.12.5. INVAdErs5MaINc.uuiiiieei e 668
20.12.6. INVAAEISBMAINcuuuieiiiiiie e eeaanns 668
20.12.7. INVAdErSAMAINveeiiii e 669
20.13. Adventures With DIOOISc.uuiiiiiiiiiieii e 669
20.13.1. USING the game.iiiiiiiiieieei et 670
20.13.2. THE COUE ..ovtiiiiiiii e 672
2O 0 S = ooV PP 674
20.15. WUMPUS WOTI ... 675

Xi

Drools Documentation

20.16. Miss Manners and Benchmarkingcccooovviiiiiiieiiiiicc e 678
20.16.1. INtrOOUCTION ...civiiiiiiiee et e eeennees 679
20.16.2. In depth DISCUSSION ...cccuuuiiiiiiiiieiiiie e 682
20.16.3. OULPUL SUMMAIY ..uuiiniiiiieeee e e e e e e e aaanas 688

20.17. Backward-ChaiNingcccouuieiiiiiiieiiii e 691
20.17.1. Backward-Chaining SYStEMSccocvviiiiiiieiiiece e 692
20.17.2. Cloning Transitive ClOSUIESooeiiiiiiieiiiiiie e 693
20.17.3. DefiniNg @ QUETY ...uuiiiiiiii e e e 694
20.17.4. Transitive Closure Exampleccoooiiiiiiiii e, 695
20.17.5. Reactive Transitive QUETESccuuveiiiiiiiiieeiiieciie e e e e 697
20.17.6. Queries with Unbound Argumentscooeiireiiiiinneeiiiinneeeeiennn. 698
20.17.7. Multiple Unbound Argumentsccuiveviiieeiiieeiiineeiieeei e eeannnns 699

Xii

(9Drools

Part I. Welcome

Welcome and Release Notes

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodology for de-
ployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A
big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the system.
Building and deploying now align with Maven and the utilization is now convention and configura-
tion oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible
and better integrated solution; with panels and perspectives via plugins. The base workbench
has been spun off into a standalone project called UberFire, so that anyone now can build high
quality web based workbenches. In the longer term it will facilitate user customised Drools and
jBPM installations.

Git replaces JCR as the content repository, offering a fast and scalable back-end storage for con-
tent that has strong tooling support. There has been a refocus on simplicity away from databases
with an aim of storing everything as text file, even meta data is just a file. The database is just
there to provide fast indexing and search via Lucene. This will allow repositories now to be synced
and published with established infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form
builders, class modellers, execution servers and runtime management. All fully integrated into the
new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related
technologies together under one roof. It also acts as the core shared around for our projects. So
expect to see it a lot.

1.2. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it ;)

Introduction

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http:/

www.jboss.org/ and click "Register".

Log in | Register | Cool Stuff

Members Projects Products

LU Community UserGroups Events Elogs Articles Eooks
Choosing the right technology... stay connected: [@ED
JBoss Community JBoss Enterprise
Community d =i table, supported products _t%,\ "J 2 uhE k out the latest
featuring th ovations] 'l'||.|_| on multiple platforms A 5 tAsy audic padcasts

for cutting Pﬂgs- appﬁ Tor misson .'.rﬂ.'l.d| apps.

JBoss Developer

Webinar Series

Learn more about the Webinar Series»

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokye, Roppongi Hills

JavaOne Tokyo 2012
0 Join Red Har at the JavaOne conference in
e il Tokyo where you can hear talks on some of

has been teleased! - the latest JBoss projects.

B JUD(_;on 2012:Boston!

June 25-26 : Baston
(N] Tty T T B B = AT SN

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and

ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Introduction

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using vour jboss.org user account and sign an [ndividual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for your contributions and ensures that the source code can be licensed appropriatelv.

Username: | E|

Password:]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidv and prevents project leads from reviewing unnecessary agreements.

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [https://issues.jboss.org/browse/JBRULES](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBRULES
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Introduction

Projects ! lssues -

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

1.2.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm
@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Introduction

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Introduction

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

Introduction

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &

.19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

Introduction

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Introduction

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)
is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the
Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will
provide you with all the dependencies you need to get going: you can simply create a new rule
project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE
for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping
a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the
case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People
have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant JARs in your
projects classpath.

1.3.1.1. Dependencies and JARs

Drools is broken down into a few modules, some are required during rule development/compiling,
and some are required at runtime. In many cases, people will simply want to include all the de-
pendencies at runtime, and this is fine. It allows you to have the most flexibility. However, some
may prefer to have their "runtime" stripped down to the bare minimum, as they will be deploying
rules in binary form - this is also possible. The core runtime engine can be quite compact, and
only requires a few 100 kilobytes across 3 JAR files.

The following is a description of the important libraries that make up JBoss Drools

» knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is
intended as a user API and what is just an engine API.

» knowledge-internal-api.jar - this provides internal interfaces and factories.

 drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine
and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and
deploying via Package or RuleBase objects).

« drools-compiler.jar - this contains the compiler/builder components to take rule source, and build
executable rule bases. This is often a runtime dependency of your application, but it need not
be if you are pre-compiling your rules. This depends on drools-core.

« drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over
the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all

10

Introduction

features are easily exposed via this interface. In some cases, it will be easier to go direct to the
Drools API, but in some environments the JSR-94 is mandated.

« drools-decisiontables.jar - this is the decision tables ‘compiler' component, which uses the
drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which
are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note
are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing
for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues
with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":
For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released POMs, which can be found
on the Maven repository.

1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant

The JARs are also available in the central Maven repository [http://search.maven.org/#search|
galllorg.drools] (and also in the JBoss Maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom xni like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bonmx/artifact!|d>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<groupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-conpiler</artifactld>
<scope>runti me</ scope>
</ dependency>

<dependenci es>

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.

11

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Introduction

If you're still using Ant (without Ivy), copy all the JARs from the download zip's bi nar i es directory
and manually verify that your classpath doesn't contain duplicate JARSs.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form
(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature
that allows you to keep your runtime very light. You may use drools-compiler to produce rule
packages "out of process", and then deploy them to a runtime system. This runtime system only
requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,
and many people do not need to "trim" their application this much, but it is an ideal option for
certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse
GEF 3.4 or greater. You can install it either by downloading the plug-in or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre pack-
aged, as well as a choice of other tools separate to rules. You can choose just to install rules from
the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (arequired dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components
in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or down-
loading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already, as do
many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu. Loca-
tion is:

http://downl oad. ecl i pse. or g/t ool s/ gef/ updat es/rel eases/

Next you choose the GEF plug-in:

12

Introduction

= [%] GEF Update Site -
> [J 000 GEF 5DK 3.2.2
b [000 GEF SDK 3.3.2
~ [=] 000 GEF SDK 3.4.2

O {tn Graphical Editing Framework Draw2d 3.4.2v20090218-1145-3317w311_12250244]

O &g Graphical Editing Framework Draw2d Developer Resour 3.4.2 v20090218-1145-3317w311_12250244]

O & Graphical Editing Framework Draw2d 5DK 3.42v20090218-1145-67738084A6665K366E

!ﬁ’- Graphical Editing Framework GEF 3.42w20090218-1145-67728084A56B412336]|

O &p Graphical Editing Framewaork GEF All-In-One SDK 3.4.2v20090218-1145-TF7I69NpWtnmMXBEpuUC

[J 4 Graphical Editing Framework GEF Developer Resources 3.4.2.v20090218-1145-67728084A56B4/12336!
[4 Graphical Editing Framework GEF Examples 3.4.1v20080806-7TETI0AQI99MORGC

O &g Graphical Editing Framewaork GEF SDK 3.4.2v20090218-1145-7BTES97TOKBd7QHQEH
O &g Graphical Editing Framework Zest Visualization Toolkit 1.0.0.v20080115-5318xB6CE899P233613552
[& Graphical Editing Framework Zest Visualization Toolkit D 1.0.0.w20080115-5318xB6CE899P233613552
O ke Graphical Editing Framework Zest Visualization Toolkit S 1.0.0.v20080115-5318_GCGFGJMZHOMaa6PM

(o]

Show only the latest versions of available software

Include items that have already been installed

Software Updates and Add-ons
Installed Software | Available Software

|type fiter text = Install...
Name Version E

Properties

Add Site...

Manage Sites...

IO

Refresh

Open the 'Automatic Updates' preference page to set up an autematic update schedule.

Close

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is
completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in direc-
tory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-in
directory, and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your
main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs
end up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.drools.org/download/download.html

To check that the installation was successful, try opening the Drools perspective: Click the 'Open
Perspective' button in the top right corner of your Eclipse window, select 'Other..." and pick the
Drools perspective. If you cannot find the Drools perspective as one of the possible perspectives,

13

http://www.drools.org/download/download.html

Introduction

the installation probably was unsuccessful. Check whether you executed each of the required
steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have Eclipse GEF installed
(check whether the org.eclipse.gef_3.4.* jar exists in the plugins directory in your eclipse root fold-
er)? Did you extract the Drools Eclipse plugin correctly (check whether the org.drools.eclipse_*.jar
exists in the plugins directory in your eclipse root folder)? If you cannot find the problem, try con-
tacting us (e.g. on irc or on the user mailing list), more info can be found no our homepage here:

http://www.drools.org/
1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of JARs on your file system that represent one specific release
of the Drools project JARs. To create a runtime, you must point the IDE to the release of your
choice. If you want to create a new runtime based on the latest Drools project JARs included in
the plugin itself, you can also easily do that. You are required to specify a default Drools runtime
for your Eclipse workspace, but each individual project can override the default and select the
appropriate runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view. To
open up your preferences, in the menu Window select the Preferences menu item. A new prefer-
ences dialog should show all your preferences. On the left side of this dialog, under the Drools
category, select "Installed Drools runtimes". The panel on the right should then show the currently
defined Drools runtimes. If you have not yet defined any runtimes, it should like something like
the figure below.

14

http://www.drools.org/

S

Introduction

[pe filter text

P
P

General

Ant

=~ Drools

Installed Drools Runtimes

R e

Drools Flow nodes

Drools Task

Guvnor

Help

Install/lUpdate

Java

Maven

Plug-in Development
Run/Debug

Team

XML

Preferences b

@ Select a default Drools Runtime o -

Add, remove or edit Drools Runtime definitions. By default, the checked
Drools Runtime is added to the build path of newly created Drools
projects.

Installed Drools Runtimes

Name Location [Add. .. l

[| Cancel

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,
requiring the name for your runtime and the location on your file system where it can be found.

15

Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame:

Create a new Drools 5 Buntime ...

Cancel

In general, you have two options:

1. If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can
create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where
you want this runtime to be created. The plugin will then automatically copy all required depen-
dencies to the specified folder. After selecting this folder, the dialog should look like the figure
shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on
your file system that contains all the necessary Drools libraries and dependencies. Instead of
creating a new Drools runtime as explained above, give your runtime a name and select the
location of this folder containing all the required JARs.

16

Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame: Drools 5.0.0 runtime

Fath: /NotBackedUp/development/drools-runtimes/drools-5.0.

Create a new Drools 5 Buntime |

| OK | | Cancel

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,
as shown below. Click on checkbox in front of the newly created runtime to make it the default
Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project
that have not selected a project-specific runtime.

|' = Preferences =

[type filter text l Installed Drools Runtimes =t =

P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the
b Ant build path of newly created Drools projects.

< Drools Installed Drools Runtimes

Drools Flow nodes Name Location Add...

Installed Drools Runtimes Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Drools Task

Guwvnor

Help

Install/Update

Java

Maven

Plug-in Development
Run/Debug

Team

v vV vy v v v v v

XML

&3] oK I [Cancel

You can add as many Drools runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

17

Introduction

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.
Preferences
[l Installed Drools Runtimes o -
P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of
B Ant newly created Drools projects.
¥ Drools Installed Drools Runtimes

Drools Flow nodes Name Location

Installed Drools Runtimes

Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Edit...

Drools Task [J Drools 4.0.7 runtime /MotBackedUp/development/drools-runtimes/drools-4.0.7

Guwvnor Remove

II>
o
=

[0 Drools 5.0.0.SNAPSHOT /NotBackedUp/development/drools-runtimes/drools-5.0.0 SNAPSHOT
Help

InstallfUpdate

Java

Maven

Flug-in Development
Run/Debug

Team

XML

R A A A S

@ | ok || cance |

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the "Convert to Drools Project" action that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin
will automatically add all the required JARs to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will
be opened, so you can add new runtimes there.

18

Introduction

Drools Runtime @

Select a Drools Runtime

[] Use default Drools Runtime {currently Drools 5.0.0 runtime)

Drools Runtime: |Drcm|5 4.0.7 runtirme b
~onfi W Setti
@ < Back Finish] | Cancel

You can change the runtime of a Drools project at any time by opening the project properties
(right-click the project and select Properties) and selecting the Drools category, as shown below.
Check the "Enable project specific settings" checkbox and select the appropriate runtime from the
drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences
showing the currently installed Drools runtimes will be opened, so you can add new runtimes
there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime
as defined in your global preferences.

19

Introduction

Properties for Drools Project

[pe filter tex l Drools -

Resource Enable project specific settings
Builders

Drools Runtime: |Drools 5.0.0. SNAPSHOT runtime A
Guvnor

Java Build Path
[Java Code Style
I Java Compiler
[» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

[Restnre gefaultsl [Apply l

@ [OK H Cancel]

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each Maven artifact is available in the JBoss Maven repository as a source
JAR. The same source JARs are also included in the download zips. However, if you want to build
from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are
hosted on GitHub [https://github.com]:

* https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our
latest changes regularly and optionally share your changes with us. To learn more about git, read
the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

20

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Introduction

$ git clone git@ithub.com drool sj bpm guvnor. gi t

$ cd guvnor
$ nmvn clean install -DskipTests -Dfull

However, there are a lot potential pitfalls, so if you're serious about building from
source and possibly contributing to the project, follow the instructions in the README
file in droolsjbpm-build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-boot-
strap/blob/master/README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting
Eclipse open the workspace in the root of your subversion checkout.

& Workspace Launcher |§|

—

Select a workspace

Eclipse 50K stores wour projects in a Folder called a workspace,
Choose a workspace Folder ko use For this session,

Workspace: | slaERanlaeEE = Lj Browse. ..

[Use this as the default and do not ask again

(]9 iZancel

21

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Introduction

& Java - Eclipse SDK

File Edit Source Refactor

Mavigate Search Proj

I -EHE | %9 %-0-Q- |

: Package Explorer X

Hierarchy g |

e

TG
Mew »

ﬁizﬁ Copy ChrlH4-C

' Paste Chrl+y

¥ Cclete Dielete
Eiild Path »

¢ 1 Impoark...

iy Export...,

q}{h Refresh F5

22

Introduction

& Import

Select

Create new projects From an archive file or directory,

Select an import source:

J kvpe Filker bexk

== General
L, archive File
QE‘ Breakpoints

Existing Projects inko WWorkspace
s {:L File Swstem
2L, Preferences

-2 CYS

-2 Plug-in Development
- Team
[+ = Other

23

Introduction

& Import

Import Projects

Select a directary ko search for existing Eclipse projects.,

{+ Select rook directory: |C:'|,|:Iev'|,jl:unssrules

(" select archive file: |

Projects:

drools-carnpiler Select Al
drools-core
drools-ide Deselect Al
drools-jsra4

arg.nexb,easyveclpse.drools, deployer

Refresh

g | Copy projects inko workspace

When calling mvn install all the project dependencies were downloaded and added to the local
Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository
is. To do this setup an M2_REPO classpath variable.

24

Introduction

Project Run

Help

= I ﬁ Eﬁ} Mew Window h,

— gt
Mew Editor

Open Perspective L&
Shiow Wiew »

Zuskomize Perspective. ..
Save Perspective &4s...
Reset Perspective

iZlose Perspective

ilose All Perspectives

Mavigation r

ff.'?' Working Sets k

25

Introduction

& Preferences

] tyvpe filker text

+- eneral
+|- &nt
+-Help
+- Installflpdate
-|- Java
[+- Appearance
Build Path
spath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

- -

(=13
Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[F=ECLIPSE_HOME - Du\javaleclpse Pew..,
EI JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200

Edit...

I

|

=

[oc]

& New Variable Entry

Ok Cancel

MName: | MZ_REPC
Path: | % /Docurnents and Settings/mproctar) . m2repository File. ..
Folder...
-:'E"_'] QK Zancel

26

Introduction

& Preferences

| tyvpe filker text

+- eneral
+- Ant
+-Help
|- Install/Update
-l Java
[+- Appearance
Build Path
Classpath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

[+

oy O e O e e B

- B

Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[ECLIPSE_HOME - Dn\javaleclpse

;:. JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[£= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200
[Z=-M2_REPQ - Dt\Docurments and Settingsimprockar.m2repasitory

Edit...

eS|
e

ok Cancel

27

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE Workbench 6.3.0 Beta 1

2.1.1. Real Time Validation and Verification for the Decision Ta-
bles

Decision tables used to have a Validation-button for validating the table. This is now removed and
the table is validated after each cell value change. The validation and verification checks include:

« Redundancy

e Subsumption

+ Conflicts

* Missing Columns

These checks are explained in detail in the workbench documentation.

2.1.2. Improved DRL Editor

The DRL Editor has undergone a face lift; moving from a plain TextArea to using ACE Editor and
a custom DRL syntax highlighter.

" 1 package org.mortgages
Fact types:(hide) 2
’ 3 rule "Dummy rule’
EGorg.mongages.Appllcam 4 calience 1
. 5 enabled false
& this 6 when
7
& creditRating B //conditions
9 then
approved 18 + modify(%a) {
& app 11 setX(10);
& applicationDate ig setv(10);
14~ if(18 > 28) {
& name 15 System.out.println{ "Hello™);
16
17 /Jactions
age
& ag 18
= (3 org. mortgages. Bankruptcy 19 end
& this
@ yearOfOccumrence
@ amountCwed

= Gnrg.mongages.lnonmeSc:urce
@ this
& amount
& type

= Gcrg.mongages.Loanﬁpplicatiun

& this -

Figure 2.1. ACE Editor

28

Release Notes

2.1.3. Generation of JPA enabled Data Models

Data modeller was extended to support the generation of persistable Data Objects. The per-
sistable Data Objects are based on the JPA specification and all the underlying metadata are
automatically generated.

« "The New -> Data Object" Data Objects can be marked as persistable at creation time.

Create new Data Object

* Data Object Invoice

Package org v

«| Persistable @

oo [

Figure 2.2. New Data Object

« JPA Domain editors for both Data Object and Field were added to manage the by default gen-
erated JPA metadata

29

Release Notes

Create new field
Entity Properties

*Id nsert a valid Java identifier Label| |nsert a label Persistable] (2]
*Type i dale

& v|@ List Table name INVOICE 2]
org.Invoice

Identifier Label

Type
X I | R B

Editor Overview Source

Figure 2.3. Data Object level JPA domain editor

Create new field
Identifier Properties

*Id Label

nsert a valid Java identifier nsert a label Is Identifier vl
"Type v | List Generation AUTO
strategy
org.Invoice zeque::e INVOICE_ID_GENERATOF
enerator

Identifier Label

Type
Column Properties

Relationship Properties

Editor Overview Source

Figure 2.4. Field level JPA domain editor

» Persistence configuration screen was added to the project editor.

30

Release Notes

& persistence.xml - Persistence descriptor Save || Delete | Rename || Copy | Validate | | Latest Version ™

Persistence Unit

Mortgages-Persistence-Unit

Persistence Provider

Hibernate v
Data Source
ExampleD3 v

Transactions Type

® ITA

Advanced properties

Project persistable Data Objects

Class name Delete
org.Invoice
org.Invoiceline
10 ltems v H 4 130f3 »

Figure 2.5. Persistence configuration
2.2. New and Noteworthy in KIE Workbench 6.2.0

2.2.1. Download Repository or Part of the Repository as a ZIP

This feature makes it possible to download a repository or a folder from the repository as a ZIP file.

31

Release Notes

Project Explorer o
demo ~ = uf-playground —FProject View 5
% Repository View
mortgages
Sh Link
. - % Show as Links
Show as Folders
O pom.xml
o & Download Project
O projectimports
& Download Repository

Figure 2.6. Download current repository or project

Project Explorer o
demo = uf-playground = = mortgages - =
mortgages
[sIC A [B
[pom.xmi A @

[project.imports A ®

Figure 2.7. Download a folder

2.2.2. Project Editor permissions
The ability to configure role-based permissions for the Project Editor have been added

32

Release Notes

Permissions can be configured using the WEB- | NF/ cl asses/ wor kbench- pol i cy. properties
file.

The following permissions are supported:

Save button
feature. wb_proj ect _aut hori ng_save
+ Delete button
feature.wb_project_authoring_delete
« Copy button
f eature. wb_proj ect _aut hori ng_copy
* Rename button
f eat ure. wb_proj ect _aut hori ng_renane
 Build & Deploy button

f eature. wb_proj ect _aut hori ng_bui | dAndDepl oy

2.2.3. Unify validation style in Guided Decision Table Wizard.

All of our new screens use GWT-Bootstrap widgets and alert users to input errors in a consistent
way.

One of the most noticable differences was the Guided Decision Table Wizard that alerted errors
in a way inconsistent with our use of GWT-Bootstrap.

This Wizard has been updated to use the new look and feel.

33

Release Notes

OutputField

Sc1ScoreCardData Fact binding

Facts that need to be referenced in
the actions need to be given an
identifier. If an identifier is not given
the system will create one.

Binding: | g5 | %

Duplicate bindings detected

Figure 2.8. New Guided Decision Table Wizard validation

2.2.4. Improved Wizards

During the re-work of the Guided Decision Table's Wizard to make it's validation consistent with
other areas of the application we took the opportunity to move the Wizard Framework to GWT-
Bootstrap too.

The resulting appearance is much more pleasing. We hope to migrate more legacy editors to
GWT-Bootstrap as time and priorities permit.

34

Release Notes

+f Summary

+f Imports

+7 Add Fact Patterns

4+ Add Constraints

+ Add Actions to update Facts
+ Add Actions to insert Facts

4 Columns to expand

Guided Decision Table Wizard

Define actions to insert new Facts\Pattemns.

Available patterns Chosen patterns

Applicant LoanApplication
Bankruptcy
DataField

>>
IncomeSource
LoanApplication =<
OutputField

SclScoreCardData

Binding (7]

Available fields

this : this

amount : Whole numb
approved : True or Fal
approvedRate : Whole
deposit : Whole numb
explanation : Text
insuranceCost : Whole

lengthYears : Whole n~
»

Chosen fields

[Amount loaned] amount

<<

Logically insert a fact - the fact will be deleted when the supporting evidence is removed. @

* Column header (description): | Amount loaned

(optional) value list:

Default value:

< Previous

MNext » Cancel

Figure 2.9. New Wizard Framework

2.2.5. Consistent behaviour of XLS, Guided Decision Tables

and Guided Templates

Consistency is a good thing for everybody. Users can expect different authoring metaphores to
produce the same rule behaviour (and developers know when something is a bug?).

There were a few inconsistencies in the way XLS Decision Tables, Guidied Decision Tables and
Guided Rule Templates generated the underlying rules for empty cells. These have been elimi-
nated making their operation consistent.

« If all constraints have null values (empty cells) the Pattern is not created.

Should you need the Pattern but no constraints; you will need to include the constraintt hi s !
= null.

This operation is consistent with how XLS and Guided Decision Tables have always worked.

« You can define a constraint on a String field for an empty String or white-space by delimiting it

with double-quotation marks. The enclosing quotation-marks are removed from the value when
generating the rules.

35

Release Notes

The use of quotation marks for other String values is not required and they can be omitted.
Their use is however essential to differentiate a constraint for an empty String from an empty
cell - in which case the constraint is omitted.

2.2.6. Improved Metadata Tab

The Metadata tab provided in previous versions was redesigned to provide a better asset version-
ing information browsing and recovery. Now every workbench editor will provide an "Overview
tab" that will enable the user to manage the following information.

) Droots Workbench x

o o YR : : ®0(iE =

U berFire Explore - New ~ Project ~ Repository ~

Project Explorer @ Underage.rdrl - Guided Rules Save | Delete | | Rename || Copy | Validate | | LatestVersion ™ | | x || ~

demo ~ / uf-playground ~ / mortgages v ¢ Type Guided Rules Comments. {Varzlon:1
Description s project refactoring to use mortgages package

& <default> Used . " 4 Version 2

sed in projects morigages
& org L o . admin: Applicant age changed to 22
& Last modified By/admin on 2014-09-02 17:58 e i be Glase oA

Created on By/Walter Medvedeo on 2013-08-18 15:54 oo] [

Version history Metadata Applicant age changed to 23

g DRL ~

Date Commit Message Author
(] bomam specirc LaNGUAGE DEFINITIONS -
Current Tuesday, 2014 Sep... Applicant age chan... admin
() enmerarion permimions «
Select Tuesday, 2014 Sep... ~ Applicant age chan... admin
&) cuwep deciion Tasies -
Select Wednesday, 2013 ... project refactoring t Walter Medvedeo
@) oupep rues ~
Bankruptcy history !
No bad credit checks
no NINJAs
ReglaRestored
Underage
(3| cuiDED RULES (WITH DSL) ~
&) () ¢ 13003 b

CreditApproval
RegexDslRule
Editor Overview Source Config

E JAVA SOURCE FILES ¥ %3
v
@] TesT scenamios ~ Problems Refresn | | x ||~
Level Text Flle Column Line

Figure 2.10. Improved Metadata Tab

 Versions history

The versions history shows a tabular view of the asset versions and provides a "Select" button
that will enable the user to load a previously created version.

36

Release Notes

Type: Guided Rules Comments
Description No ption yet - 0
#
Used in projects mortgages B
Last modified By/admin on 2014-09-02 17:58 “Age should be change to 23"
Created on: By/Walter Medvedeo on 2013-09-18 15:54

Version history Metadata

Date Commit Message Author
Current Tuesday, 2014 Sep... Applicant age chan... admin
Select Tuesday, 2014 Sep... = Applicant age chan... admin
Select Wednesday, 2013 ... project refactoringt... Walter Medvedeo

2044-05-02 1801

4 4 1-3of3 » » M

Figure 2.11. Versions history
* Metadata

The metadata section gets access to additional file attributes.

37

Release Notes

Type: Guided Rules Comments
Description No descripti
5 admin:
Used in projects mortgages "Age should be change to 23 "
Last modified By/admin on 2014-09-02 17:38 2014.09.02 1801
Created on: By/Walter Medvedeo on 2013-09-18 15:54

Version history ~ Metadata

Categories: L
Note: Applicant age changed to 23
URI:

git://master@uf-playground/mortgages/src/main/resources/org/mortgages/Underage. rdrl
Subject:
Type:

External link:

Source:

Figure 2.12. Metadata section
+ Comments area

The redesigned comments area enables much clearer discussions on a file.
 Version selection dropdown

The "Version selector dropdown" located at the menu bar provides the ability to load and restore
previous versions from the "Editor tab", without having to open the "Overview tab" to load the
"Version history".

38

Release Notes

Underage.rdrl - Guided Rules Save | Delete || Rename | Copy | Validate || LatestVersion™ | | x | ~
None selected |
EXTENDS Version 1
WHEN | project refactoring to use mortgages package &
1, Thereisa LoanA.pp\lcat\.on [application] | Version2 agedl|
- There is an Applicant with: = Applicant age changed to 22 -
. age less than v oa =
THEN Applicant age changed to 23 g
1. delete LoanApplication [application] agedl
Set value of LoanApplication [application] approved false ra a
2. gl
Set value of LoanApplication [application] explanation Underage =] =]
(show
options...)

Editor Overview Source Config

Figure 2.13. Version selection dropdown

2.2.7. Improved Data Objects Editor

The Java editor was unified to the standard workbench editors functioning. It means that and now
every data object is edited on his own editor window.

39

Release Notes

) KIE Workbench x

e+ (& [localhost P+ =

KIE Workbench

Explore ~ New Item ~ Repository ~ Q
Project Explorer & = ~ Applicant.java - Data Objects Save Delete || Rename Copy | Validate LlatestVerson™ | X ™| A
demo ~ | uf-playground ~ / mortgages ~
Create new field Data Object Field

T T BT *Id Label
en Pro itor
g 2 Identifier Applicant
Label
E DRL ~
org.mortgages.Applicant Description
g DATA OBJECTS ~
Identifier Label Type
Applicant Package org.mortgages v o
Bankruptcy
Superclass ava.lang.Object v
IncomeSource applicationDate Date I 9N
LoanApplication
approved Boolean Drools & JBPM parameters:
DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
g] creditRating String TypeSafe v @
E ENUMERATION DEFINITIONS ~ name String ClassReactive (-]
PropertyReactive (7]
@ GUIDED DECISION TABLES =
Role + @
@ GUIDED RULES ~ Timestamp v e
@ GUIDED RULES (WITH DSL) = Duration v e
Expires
@ TEST SCENARIOS ~ ©
Remotable @
Editor ~ Overview Source
»
Messages Refresh || Clear | | x| ™| A

Figure 2.14. Improved Data Object Editor

« "New -> Data Object" option was added to create the data objects.

« Overview tab was added for every file to manage the file metadata and have access to the file
versions history.

» Editable "Source Tab" tab was added. Now the Java code can be modified by administrators
using the workbench.

» "Editor" - "Source Tab" round trip is provided. This will let administrators to do manual changes
on the generated Java code and go back to the editor tab to continue working.

» Class usages detection. Whenever a Data Object is about to be deleted or renamed, the project
will be scanned for the class usages. If usages are found (e.g. in drl files, decision tables, etc.)
the user will receive an alert. This will prevent the user from breaking the project build.

40

Release Notes

) KIE Workbench x

$ W,>> & [localhost: w =

Usages Detected

Class: org.mortgages.Applicant is being used in the following files, do you still
want to delete it?

pproval.rasir

RegexDsIRule.rdslr

credit ratings

ApplicantDs!.ds!

No bad credit checks.rdrl

Underage.rarl

NINJAs scenario

©ves, e ey

Figure 2.15. Usages detection

2.2.8. Execution Server Management Ul

A new perspective called Management has been added under Servers top level menu. This per-
spective provides users the ability to manage multiple execution servers with multiple containers.
Available features includes connect to already deployed execution servers; create new, start, stop,
delete or upgrade containers.

41

Release Notes

8086 KIE Workbench e
alr |2 O] [L)| &) &][+ & ocalhost:3080 ¢ |uReade MO
KIE Workbench
Servers ~
Server Management Browser Container Info [mortgages] x
oe Filter... x ¥ Register Z Refresh .
nterval Start Scanner = Stop Scanner Scan Now @
oe MyServer +
oo mortgages - Endpaint
http://localhost:8081/kie-server-
services/services/rest/server/containers/mortgages
Release Id
I Group Id Artifact Id Version
mortgages mortgages LATEST Upgrade

Resolved Release Id

Group Id Artifact 1d Version

mortgages mortgages 0.01

Figure 2.16. Management perspective

Note

Current version of Execution Server just supports rule based execution.

2.2.9. Social Activities

A brand new feature called Social Activities has been added under a new top level menu item
group called Activity.

This new feature is divided in two different perspectives: Timeline Perspective and People Per-
spective.

The Timeline Perspective shows on left side the recent assets created or edited by the logged
user. In the main window there is the "Latest Changes" screen, showing all the recent updated
assets and an option to filter the recent updates by repository.

42

Release Notes

Recent Assets Latest Changes
Ef_-ig anotherDRL.drl edited today Showing updates for: | Latest Changes |

B Finance.java

—= . = i added 05/09/2014 11:48:52
HE‘:E sampleDrl.drl edited today [admin o)

1N

- = in edited 05/09/2014 11:49:35 "JIRA[1234]"
s) Finance.java added today E_‘..‘a admin /09/ []
& :
]
E‘i - Finance.java edited today = sampleDrl.drl
= 1 ﬂ director edited 05/09/2014 11:47:15 "JIRA[123]"
% anotherDRL.drl

admin edited 05/09/2014 11:46:38 "rule changed for X"

Figure 2.17. Timeline Perspective

The People Perspective is the home page of an user. Showing his infos (including a gravatar
picture from user e-mail), user connections (people that user follow) and user recent activities.
There is also a way to edit an user info. The search suggestion can be used to navigate to a user
profile, follow him and see his updates on your timeline.

Eder Ignatowicz's Profile " Eder Ignatowicz's Recent Activities

Connections:

]

= anotherDRL.drl edited today

- sampleDrl.drl edited today

-
i

W4

User name:admin

E-mail:ignatowicz@gmail.com

Edit my infos

Figure 2.18. People Perspective

43

Release Notes

Edit my infos

E-mail

ignatowicz@gmail.com

Real Name

Eder Ignatowicz

Figure 2.19. Edit User Info

2.2.10. Contributors Dashboard

A brand new perspective called Contributors has been added under a new top level menu item
group called Activity. The perspective itself is a dashboard which shows several indicators about
the contributions made to the managed organizations / repositories within the workbench. Every
time a organization/repository is added/removed from the workbench the dashboard itself is up-
dated accordingly.

This new perspective allows for the monitoring of the underlying activity on the managed repos-
itories.

44

Release Notes

KIE Workbench

Contributors

Commits per organization

Activity ~

Contributors

#Commits evolution

500 60
o 45
£ 400
£
3 30
5 30
o
b
£ demo. 18
S
£ 0 o
O T T T T T T T I
-, NN e‘q_n e&a e‘q_n e&a PR d‘ﬂ'“ A AN a® e&a e‘@ e&a
100 PEA s d@t 0% 0P ot e et Pt T S0 :?\90 Ry
1 2 3 P-%eg‘@ a0 e 3 ged P-QFO@ oo
#repositories
SUNDAY
- Select Organization - v P
- Select Repository - A ai TUESDAY
2012 maz WEDNESDAY
- Select Author - v f=po -
o4 THURSDAY
- Select Top Contributor - v
FRIDAY
SATURDAY

Author

Repository

Date

Commit

David Gutierrez

Administrator User

David Gutierrez

Administrator User

David Gutierrez

jopm-playground
jopm-playground
jbpm-playground
jbpm-playgreund

jbpm-playground

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

delete {{Evaluation/.pom.xml}

hjk

delete {{Evaluation/src/main/resource. .
hjk

delete {{Evaluation/_project.imports}

M4 1501237 » » M

Figure 2.20. Contributors perspective

2.2.11. Package selector
The location of new assets whilst authoring was driven by the context of the Project Explorer.
This has been replaced with a Package Selector in the New Resource Popup.

The location defaults to the Project Explorer context but different packages can now be more
easily chosen.

45

Release Notes

* Resource Name

Location

Create new Guided Rule

resource name

org.mortgages

<default>
org

org.mortgages

urgpz

(DSL)

O Ok Cancel

Figure 2.21. Package selector

2.2.12. Improved visual consistency

All Popups have been refactored to use GWT-Bootstrap widgets.

Whilst a simple change it brings greater visual consistency to the application as a whole.

46

Release Notes

Condition column configuration

Pattern:LoanApplication [applicatinn
Calculation type:® Literal value) Formula® Predicate

Fielg: @mount ey

Operator.greater than g7

From Entry Point:

Column header (description); &mount min
(optional) value list:
Default value:

Binding:

Hide column:_

O Ok Cancel

Figure 2.22. Example Guided Decision Table Editor popup

47

Release Notes

Modify constraints for LoanApplication

_"'\1("

Modify constraints for LoanApplication

Add a restriction on a field ... ¥
Multiple field constraint ... v ©
Advanced options:
Add a new formula style expression New formula

Expression editor Expression editor

Variable name @ Set

Figure 2.23. Example Guided Rule Editor popup

2.2.13. Guided Decision Tree Editor

A new editor has been added to support modelling of simple decision trees.

See the applicable section within the User Guide for more information about usage.

dtl.tdrl - Guided Decision Trees

aaaaa

Applicant

Q- X
A
® 3 T 1 T $a : Applican:
age
[Y-
@ |
e creditRating == AA —— credifRating = OK — creditRating == Sub prim
. creditRating
""""""" Update $3 ——— Update 38 ——————— Update $3
Bankruptcy \/

IncomeSource

LoanApplication

Actions

Figure 2.24. Example Guided Decision Tree

48

Release Notes

2.2.14. Create Repository Wizard

A wizard has been created to guide the repository creation process. Now the user can decide
at repository creation time if it should be a managed or unmanaged repository and configure all
related parameters.

New Repository

+ Basic Settings

Managed Repository Settings Repository Name

DemoRepository

* In Organizational Unit

demo v

¥ Managed Repository

A managed repository provides project-level version control and project branches for managing the release cycle.

< Previous Next » Cancel & Finish

Figure 2.25. Create Repository Wizard 1/2

49

Release Notes

New Repository

+ Basic Settings
+ Managed Repository
Settings

Repository Type:

Single-project Repository

Create a single managed project in this repository. Use this option for simple or self-contained projects.

* Multi-project Repository

Integrate multiple projects to create a larger application. The projects in this repository will be managed

together, and will all increment version numbers together.

Project Branches:

¥ Automatically Configure Branches (master/devirelease)

Project Settings:
*Name

DemoRepository
Description

enter project description
* Group

demo
* Artifact

DemoRepository

* Version

1.0.0-SNAPSHOT

< Previous

Figure 2.26. Create Repository Wizard 2/2

2.2.15. Repository Structure Screen

Next »

The new Repository Structure Screen will let users to manage the projects for a given repository,
as well as other operations related to managed repositories like: branch creation, assets promotion

and project release.

50

Release Notes

@ KIE Workbench %\

&° »% (& | [localhost:8080/kie-wb-6.3.0-SNAPSHOT-eap6_4/kie-wb htmlitorg kie workbench.common.screens.messageconsole.MessageConsole s [=

KIE Workbench

Explore ~ New Item ~ Search Q

Project Explorer Repository Structure & |~ Repository Structure ManagedRepositoryExample (master) - > ManagedRepositoryExample:demo:1.0.0... confgure | Promote Release | | x | ™ | A

B IS ™
demo ~ ' ManagedRepositoryExample ~ / Module2 ~

master + Repository Groupld EET)
Repository Artifactld
Repository Version BRGS0

Open Project Editor

[Hodues

© Add Module

Module

Module1 © Deete

Module2 # Edit © Delete

Figure 2.27. Repository Structure Screen for a Managed Repository

51

Release Notes

@ KIE Workbench

& »» (& [localhost: ol @ =

KIE Workbench

Explore ~ New Item ~ Q
Project Explorer [© A~ Unmanaged Repository uf-playground (master) configure | | Promote | [Release | | x || ~ || A
demo ~ / uf-playground - ' mortgages -

Open Project Editor

© New Project
Module
"
Messages Refresh | Cear | | x| ¥ || A
Javascript:; Text Flle Column Line -

Figure 2.28. Repository Structure Screen for an Unmanaged Repository
2.3. New and Noteworthy in Integration 6.2.0

2.3.1. KIE Execution Server

A new KIE Execution Server was created with the goal of supporting the deployment of kjars and
the automatic creation of REST endpoints for remote rules execution. This initial implementation
supports provisioning and execution of kjars via REST without any glue code.

A user interface was also integrated into the workbench for remote provisioning. See the
workbench's New&Noteworthy for details.

@ath("/server")
public interface KieServer {

@ET
@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
public Response getlnfo();

@0osT

@onsumnes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i c Response execute(ConmmandScript comrand);

@ET

52

Release Notes

@at h("cont ai ners")
@°r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
publ i c Response |istContainers();

@ET

@Pat h("containers/{id}")

@r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i c Response get Containerlnfo(@PathParan("id") String id);

@ur
@Pat h("contai ners/{id}")
@Consunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i ¢ Response creat eCont ai ner (@at hParan("id") String id, K eContainerResource container);

@ELETE

@ath("containers/{id}")

@°r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
publ i c Response di sposeContai ner(@PathParan("id") String id);

@QosT

@Pat h("contai ners/{id}")

@onsumres({ Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

@r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

public Response execute(@PathParam("id") String id, String cndPayl oad);

@ET

@Pat h("contai ners/{id}/rel ease-id")

@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
publ i c Response getRel easel d(@pat hParam("id") String id);

@osT

@ath("contai ners/{id}/rel ease-id")

@onsunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})

@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

publ i c Response updat eRel easel d(@Pat hParan("id") String id, Releaseld releaseld);

@sET

@rat h("cont ai ners/{id}/scanner")

@r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})
public Response get Scanner|nfo(@athParan("id") String id);

@0osT

@pat h("cont ai ners/{id}/scanner")

@onsunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

@°r oduces({Medi aType. APPLI CATI ON_XM., Medi aType. APPL| CATI ON_JSON})

publi c Response updateScanner(@athParan("id") String id, KieScannerResource resource);

Figure 2.29. Kie Server interface

53

Release Notes

2.4. What is New and Noteworthy in Drools 6.1.0

2.4.1. JMX support for KieScanner

Added support for IMX monitoring and management on KieScanner and KieContainer. To en-
able, set the property ki e. scanner . nbeans to enabl ed, for example via Java command line:
Dki e. scanner . nbeans=enabl ed .

KieScannerMBean will register under the name:

It exposes the following properties:

» Scanner Release Id: the release ID the scanner was configured with. May include maven range
versions and special keywords like LATEST, SNAPSHOT, etc.

* Current Release Id: the actual release ID the artifact resolved to.
* Status: STARTING, SCANNING, UPDATING, RUNNING, STOPPED, SHUTDOWN

It also exposes the following operations:

» scanNow(): forces an immediate scan of the maven repository looking for artifact updates

« start(): starts polling the maven repository for artifact updates based on the polling interval
parameter

« stop(): stops automatically polling the maven repository
2.5. New and Noteworthy in KIE Workbench 6.1.0

2.5.1. Data Modeler - round trip and source code preservation

Full round trip between Data modeler and Java source code is now supported. No matter where
the Java code was generated (e.g. Eclipse, Data modeller), data modeler will only update the
necessary code blocks to maintain the model updated.

2.5.2. Data Modeler - improved annotations

New annotations @TypeSafe, @ClassReactive, @PropertyReactive, @Timestamp, @Duration
and @Expires were added in order enrich current Drools annotations manged by the data modeler.

2.5.3. Standardization of the display of tabular data

We have standardized the display of tabular data with a new table widget.

The new table supports the following features:

» Selection of visible columns

* Resizable columns

54

Release Notes

* Moveable columns

— e |
= L=
Open Format Name Created Date
Open Dummy rule.drl 2014 Jun 10 14:50:34
Open ApplicantDsl.dsl 2014 Jun 10 14:50:35
=
Open credit ratings.enumeration 2014 Jun 10 14:50:36
o
Pricing loans.gdst 2014 Jun 10 14:50:37
Open
Open Bankruptcy history.rdri 2014 Jun 10 14:50:39

Figure 2.30. New table

The table is used in the following scenarios:

Inbox (Incoming changes)

* Inbox (Recently edited)

* Inbox (Recently opened)

» Project Problems summary

« Artifact Repository browser

 Project Editor Dependency grid

 Project Editor KSession grid

» Project Editor Work Item Handlers Configuration grid
» Project Editor Listeners Configuration grid

» Search Results grid

2.5.4. Generation of nodify(x) {...} blocks

M W M »

The Guided Rule Editor, Guided Template Editor and Guided Decision Table Editor have been

changed to generate modi fy(x){...}

55

1-10 of 15

Release Notes

Historically these editors supported the older updat e(x) syntax and hence rules created within
the Workbench would not respond correctly to @r opert yReact i ve and associated annotations
within a model. This has now been rectified with the use of nodi fy(x){...} blocks.

2.6. New and Noteworthy in KIE API1 6.0.0

2.6.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

/\

[OptaPIanner Drools UberFlre iBPM

[Guvnor

v v
[Drools-WB \(‘JBPM-WB

KIE-WB

Figure 2.31. KIE Anatomy

2.6.2. Maven aligned projects and modules and Maven Deploy-
ment
One of the biggest complaints during the 5.x series was the lack of defined methodology for de-

ployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible. A
big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the sys-

56

Release Notes

tem. Building and deploying activities are now aligned with Maven and Maven repositories. The
utilization for loading rules and processess is now convention and configuration oriented, instead
of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven reposito-
ries. Maven is then used to declare and build the classpath of dependencies, for KIE to access.

2.6.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
are used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<knodul e xm ns="http://jboss. org/kie/6.0.0/knmodul e">
<kbase nanme="kbasel" packages="org. nypackages>
<ksessi on nane="ksessi onl"/>
</ kbase>
</ knodul e>

Example 2.2. Utilize the KieSession

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSession = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. i nsert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

2.6.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase, in addition to all the rules, function and processes directly defined
into it, will also contain the ones created in the included KieBase. This inclusion can be done
declaratively in the kmodule.xml file

Example 2.3. Including a KieBase into another declaratively

<kmodul e xm ns="http://jboss.org/kie/6.0.0/knodul e">
<kbase nanme="kbase2" includes="kbasel">
<ksessi on nanme="ksessi on2"/>
</ kbase>
</ knmodul e>

or programmatically using the Ki eMbdul eMbdel .

57

Release Notes

Example 2.4. Including a KieBase into another programmatically

Ki eMbdul eMbdel knodul e = Ki eServi ces. Factory. get (). newki eModul eMbdel () ;
Ki eBaseMdbdel ki eBaseMbdel 1 = knodul e. newKi eBaseMdel (" KBase2") . addl ncl ude("KBasel");

2.6.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a 'kmodule.xml' in it is considered a KieModule. This can be loaded
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds Maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are
supported.

Example 2.5. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (
ks. newRel easel d("org. nygroup", "nyartefact", "1.0"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

KieContainers can be dynamically updated to a specific version, and resolved through Maven
if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally
updated.

Example 2.6. Dynamically Update - Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(
ks. newRel easel d("org. nygroup", "nyartefact", "1.1"));

2.6.6. KieScanner

The Ki eScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.
It continuously monitors your Maven repository to check if a new release of a Kie project has
been installed and if so, deploys it in the Ki eCont ai ner wrapping that project. The use of the
Ki eScanner requires kie-ci.jar to be on the classpath.

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

58

Release Notes

Example 2.7. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = KieServices. Factory.get();

Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0- SNAPSHOT");
Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also pos-
sible to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds, in
the Maven repository, an updated version of the Kie project used by that Ki eCont ai ner it auto-
matically downloads the new version and triggers an incremental build of the new project. From
this moment all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the
new project version.

2.6.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance prob-
lems and bugs. Traditional hierarchical classloaders are now used. The root classloader is at the
KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add and
remove rules, but there can now be no referencing between namespaces in DRL files; i.e. func-
tions can only be used by the namespaces that declared them. The recommendation is to use
static Java methods in your project, which is visible to all namespaces; but those cannot (like other
classes on the root KieContainer ClassLoader) be dynamically updated.

2.6.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through Maven de-
pendency "knowledge-api-legacy5-adapter”. Because the nature of deployment has significantly
changed in 6.0, it was not possible to provide an adapter bridge for the KnowledgeAgent. If any
other methods are missing or problematic, please open a JIRA, and we'll fix for 6.1

2.6.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire
documentation has not yet been brought up to date. For this reason there will be continued ref-
erences to old terminologies. Apologies in advance, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

59

Release Notes

2.7. What is New and Noteworthy in Drools 6.0.0

2.7.1. PHREAK - Lazy rule matching algorithm

The main work done for Drools in 6.0 involves the new PREAK algorithm. This is a lazy algorithm
that should enable Drools to handle a larger number of rules and facts. AngendaGroups can now
help improvement performance, as rules are not evaluated until it attempts to fire them.

Sequential mode continues to be supported for PHREAK but now ‘'modify’ is allowed. While there is
no 'inference' with sequential configuration, as rules are lazily evaluated, any rule not yet evaluated
will see the more recent data as a result of 'modify’. This is more inline with how people intuitively
think sequential works.

The conflict resolution order has been tweaked for PHREAK, and now is ordered by salience and
then rule order; based on the rule position in the file.. Prior to Drools 6.0.0, after salience, it was
considered arbitrary. When KieModules and updateToVersion are used for dynamic deployment,
the rule order in the file is preserved via the diff processing.

2.7.2. Automatically firing timed rule in passive mode

When the rule engine runs in passive mode (i.e.: using fireAllRules) by default it doesn't fire con-
sequences of timed rules unless fireAllRules isn't invoked again. Now it is possible to change this
default behavior by configuring the KieSession with a Ti medRul eExecti onOpti on as shown in
the following example.

Example 2.8. Configuring a KieSession to automatically execute timed rules

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
ksconf . set Opti on(Ti nedRul eExecti onOption. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 2.9. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
conf.set Option(new Ti medRul eExecti onOpti on. FI LTERED(new Ti medRul eExecutionFilter() {
public bool ean accept (Rule[] rules) {
return rul es[0]. get Nane(). equal s("M/Rul e");
}
)

60

Release Notes

2.7.3. Expression Timers

Itis now possible to define both the delay and interval of an interval timer as an expression instead
of a fixed value. To do that it is necessary to declare the timer as an expression one (indicated
by "expr:") as in the following example:

Example 2.10. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rule "Expression tinmer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
then
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 2.11. An Interval Timer with a start and an end
timer (int: 30s 10s; start=3-JAN-2010, end=5-JAN-2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of repeti-
tions allowed by the timer. If both the end and the repeat-limit parameters are set the timer will
stop when the first of the two will be matched.

61

Release Notes

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't be
scheduled immediately but will preserve the phase defined by the timer and so it will be scheduled
for the first time 30 seconds after the midnight. If for some reason the system is paused (e.qg.
the session is serialized and then deserialized after a while) the rule will be scheduled only once
to recover from missing activations (regardless of how many activations we missed) and subse-
quently it will be scheduled again in phase with the timer.

2.7.4. RuleFowGroup and AgendaGroups are merged

These two groups have been merged and now RuleFlowGroup's behave the same as Agenda-
Groups. The get methods have been left, for deprecation reasons, but both return the same un-
derlying data. When jBPM activates a group it now just calls setFocus. RuleFlowGroups and
AgendaGroups when used together was a continued source of errors. It also aligns the codebase,
towards PHREAK and the multi-core explotation that is planned in the future.

2.8. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there
is an utility project to help with migration. Git is the most scalable and powerful source repository
bar none. JGit provides a solid OSS implementation for Git. This addresses the continued perfor-
mance problems with the various JCR implementations, which would slow down once the number
of files and number of versions become too high. There has been a big "low tech" drive, to remove
complexity. Everything is now stored as a file, including meta data. The database is only there
to provide fast indexing and search. So importing and exporting is all standard Git and external
sites, like GitHub, can be used to exchange repositories.

62

Release Notes

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside Eclipse. Git enables
our repository to work any existing Git tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

File Edit View History Bookmarks Tools Accessibility Help

3 KIE Drools wWorkbench

\;D %3 localhost +@| M- Q @ "» v g’o’f
Drools Workbench

Explore ~ Newltem ~ Tools = Q
Project Explorer @ Guided Editor [Bankruptcy history] Save || Delkete || Rename || Copy | Vaidate | | x ||~
EXTENDS Mone selected o
demo = uf-playground ~ mortgages ~ =
WHEN h
B <default> 1. Thereis a LoanApplication [a]

The following exists

& og There is a Bankruptcy with:
& morigages any ofthe following:
2. yearOfOccurrence greater than j 1990
amountOwed greater than j 10000
% DRL THEN
| 1. delete LoanApplication [a]
@DOMAIN SPECIFIC LANGUAGE DEFINITION . fals
Setvalue of LoanApplication [a] approved false jn

2' IR S S F—y =

(© ENUMERATION DEFINITION L

Edit Source Config Metadata
// GUIDED DECISION TABLE
@ GUIDED RULE Problems x| |-

Bankruptcy history Level Text File Column Line
No bad credit checks

[ERR 102] Line

no NINJAs 7:0 mismatched
a8 Dummy rule.drl 0 7
Underage input ‘then’ in rule

"Dummy rule”

Figure 2.32. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven
repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM
plugins. The BPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-
WB.

63

Release Notes

s N
Uberfire
|ong.uberfire]
hitps gt comdneokibpeyutarfin L j
s N
* Maven Reposilory
Guvnor * Projact Sarvics
[org guvnorguynod * Inbo
* WarkNew
hitpegithu. comdnooisibpm guor [
A
7 ™y
. * Hame page
kig-wh-commaon * Projact Explonar
[rg lokex kig-wb-common] * Diata Madaller
* Mata Data
> * Search
g it ol =t l‘//—) e -
- {,.'
" -~
I — e e
* DAL : '; * JBPM Console
drools-wb " Guided Edilor i jbpm-wb y " IEPM Desigrer
[mrg.drools:droals-wh] 'H':;Hl Scenarnas : [org.opmijbom-wb] |
I
L — F
m:p..--uun.im:mhumiqln%b\\ e ,,.'-'"
~ % - .
i e = e
e J .
ST B
N] I s = I
kie-drools-wb kie-wb I kie-jopm-wb !
g e ka-drools-wh] forg.kie:kie-ath] : [org kiekie-bpm-wh] :
Y e e e o +
sie-wh-distrbusons | hitpsgthub comichooishpmikie-wh-istrioutions

p

o

Figure 2.33. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

The two primary distributions consist of:

 KIE Drools Workbench
 Drools Editors, for rules and supporting assets.
¢ jBPM Designer, for Rule Flow and supporting assets.

» KIE Workbench

64

Release Notes

Drools Editors, for rules and supporting assets.

jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.

jBPM Form Builder.
* BAM.

Workbench highlights:

New flexible Workbench environment, with perspectives and panels.

* New packaging and build system following KIE API.

« Maven based projects.

» Maven Artifact Repository replaces Global Area, with full dependency support.

« New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java class-
es to the authoring environment. Java classes are packaged into the project and can be used
within rules, processes etc and externally in your own applications.

* Virtual File System replaces JCR with a default Git based implementation.
» Default Git based implementation supports remote operations.
» External modifications appear within the Workbench.

* Incremental Build system showing, near real-time validation results of your project and assets.
The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

2.9. New and Noteworthy in Integration 6.0.0

2.9.1. CDI

CDI is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

@ nj ect

@Sessi on("kbasel")

@Rel easel d(groupld = "jarl", rtifactld = "art1", version = "1.0")
private Ki eBase kbaselv10;

@ nj ect
@Base("kbasel")

65

Release Notes

@Rel easel d(groupld = "jarl", rtifactld = "art1", version = "1.1")
private Ki eBase kbaselv10;

Figure 2.34. Side by side version loading for 'jarl.KBasel' KieBase

@ nj ect

@KSessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", rtifactld
private KieSession ksessionv10;

"art1", version "1.0")

@ nj ect

@Sessi on("ksessi onl")

@Rel easel d(groupld = "jarl", rtifactld = "art1", version = "1.1")
private KieSession ksessionvll;

Figure 2.35. Side by side version loading for ‘jarl.KBasel' KieBase

2.9.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml
with a more powerful spring version. The aim is for consistency with kmodule.xml

2.9.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for con-
sistency with spring and kmodule.xml

2.9.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

66

Chapter 3. Compatibility matrix

Starting from KIE 6.0, Drools (including workbench), jBPM (including designer and console) and
OptaPlanner follow the same version numbering.

67

Part Il. KIE

KIE is the shared core for Drools and jBPM. It provides a unified methodology and programming
model for building, deploying and utilizing resources.

Chapter 4. KIE

4.1. Overview

4.1.1. Anatomy of Projects

The process of researching an integration knowledge solution for Drools and jBPM has simply
used the "droolsjbpm" group name. This name permeates GitHub accounts and Maven POMs.
As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything,
was chosen as the new group name. The KIE name is also used for the shared aspects of the
system; such as the unified build, deploy and utilization.

KIE currently consists of the following subprojects:

[OptaPlanner [Drools UberFlre] jBPM J

Y
[Drools-WBj/

Figure 4.1. KIE Anatomy

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is
now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while
having strong Drools integration, has long been independant of Drools.

69

KIE

From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder
which provides powerful reporting capabilities. Dashboard Builder is currently a temporary name
and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independant
of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)

UberFire is the new base workbench project, spun off from the ground up rewrite. UberFire pro-
vides Eclipse-like workbench capabilities, with panels and perspectives from plugins. The project
is independant of Drools and jBPM and anyone can use it as a basis of building flexible and pow-
erful workbenches. UberFire will be used for console and workbench development throughout
JBoss.

It was determined that the Guvnor brand leaked too much from its intended role; such as the au-
thoring metaphors, like Decision Tables, being considered Guvnor components instead of Drools
components. This wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In
6.0 Guvnor's focus has been narrowed to encapsulate the set of UberFire plugins that provide
the basis for building a web based IDE. Such as Maven integration for building and deploying,
management of Maven repositories and activity notifications via inboxes. Drools and jBPM build
workbench distributions using Uberfire as the base and including a set of plugins, such as Gu-
vnor, along with their own plugins for things like decision tables, guided editors, BPMN2 designer,
human tasks. The Drools workbench is called Drools-WB. KIE-WB is the uber workbench that
combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn't
actually exist, being made redundant by KIE-WB.

4.1.2. Lifecycles

The different aspects, or life cycles, of working with KIE system, whether it's Drools or jBPM, can
typically be broken down into the following:

« Author

» Authoring of knowledge using a Ul metaphor, such as: DRL, BPMN2, decision table, class
models.

* Build

* Builds the authored knowledge into deployable units.

* For KIE this unitis a JAR.
* Test

» Test KIE knowedge before it's deployed to the application.
« Deploy

» Deploys the unit to a location where applications may utilize (consume) them.

70

KIE

» KIE uses Maven style repository.
« Utilize

» The loading of a JAR to provide a KIE session (KieSession), for which the application can
interact with.

» KIE exposes the JAR at runtime via a KIE container (KieContainer).

» KieSessions, for the runtime's to interact with, are created from the KieContainer.
* Run

» System interaction with the KieSession, via API.
* Work

» User interaction with the KieSession, via command line or UI.
* Manage

* Manage any KieSession or KieContainer.

4.2. Build, Deploy, Utilize and Run

4.2.1. Introduction

6.0 introduces a new configuration and convention approach to building knowledge bases, instead
of using the programmatic builder approach in 5.x. The builder is still available to fall back on, as
it's used for the tooling integration.

Building now uses Maven, and aligns with Maven practices. A KIE project or module is simply
a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The
kmodule.xml file is the descriptor that selects resources to knowledge bases and configures those
knowledge bases and sessions. There is also alternative XML support via Spring and OSGi Blue-
Prints.

While standard Maven can build and package KIE resources, it will not provide validation at build
time. There is a Maven plugin which is recommended to use to get build time validation. The plugin
also generates many classes, making the runtime loading faster too.

The example project layout and Maven POM descriptor is illustrated in the screenshot

71

KIE

- e T
v [ldrools-examples-api
¥ [idefault-kiesession
v Clsrc
v Cmain
v [Cjava
v org.drools.example.api.defaultkiesession
e % DefaultKieSessionExample
o Message
¥ [Zresources
v defaultkiesession
Hall.drl
v META-INF
= kmodule.xml
= logback.xml
: test
v [java
v org.drools.example_api.defaultkiesession
& & DefaultkieSessionExampleTest
&4 DefaultKieSessionFromFSExampleTest
.gitignore
Il default-kiesession.im!
m pom.xml
¥ [ldefault-kiesession-from-file
v Osrc
> Bl main
¥ Cltest
v Bjava

<?xml version="1.8" encoding="UTF-8"7>
J=project xmlns="http://maven.apache.org/POM/4.0.08"

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.8,@</modelVersion>
<parent>
<groupIld>org.drools</groupld>
<artifactId>drools-examples-api</artifactId-
<version=6.8.0%=/version>
</parent=>

<artifactId>default-kiesession</artifactId>
<name>Drools API examples - Default KieSession</name=>

<dependencies>
=dependency=
<groupld=org.drools</groupld=
<artifactld=drools-compiler</artifactId=
</dependency>
</dependencies>

<build>
<plugins=>
<plugin>
<groupld=org.drools</groupId=
<artifactId-drools-maven-plugin</artifactld>
<version=0.@.2</version=
<extensions>true</extensions>
</plugin>
</plugins=
</build=

</project>

Figure 4.2. Example project layout and Maven POM

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the
simplest configuration. There must always be a kmodule.xml file, even if empty, as it's used for
discovery of the JAR and its contents.

Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other appli-
cations on the local machine use it. Or it can 'mvn deploy' to push the KieModule to a remote
Maven repository. Building the Application will pull in the KieModule and populate the local Maven
repository in the process.

72

KIE

—_ —_
-,.,_‘_‘___-___-___._F,.,- 'H-._____________,_F-‘
Maven Maven
Repository [" Repository
(remote) " (local)

— — " — —

i
mvn deploy mvn install
Froject Application

Figure 4.3. Example project layout and Maven POM

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR
in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan the
classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by the
KieModule interface. The terms classpath KieModule and dynamic KieModule are used to refer to
the two loading approaches. While dynamic modules supports side by side versioning, classpath
modules do not. Further once a module is on the classpath, no other version may be loaded
dynamically.

Detailed references for the API are included in the next sections, the impatient can jump straight
to the examples section, which is fairly self-explanatory on the different use cases.

73

KIE

4.2.2. Building

org.kie.api.builder

Include KieBuilder
KieFileSystem KieModule
KieRepository KieScanner
Message Releaseld
Results

Message.Level

yviworks UML Doclet

Figure 4.4. org.kie.api.core.builder

4.2.2.1. Creating and building a Kie Project

A Kie Project has the structure of a normal Maven project with the only peculiarity of including
a kmodule.xml file defining in a declaratively way the Ki eBases and Ki eSessi ons that can be
created from it. This file has to be placed in the resources/META-INF folder of the Maven project
while all the other Kie artifacts, such as DRL or a Excel files, must be stored in the resources
folder or in any other subfolder under it.

74

KIE

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

Example 4.1. An empty kmodule.xml file

<?xm version="1.0" encodi ng="UTF-8"?>
<kmodul e xm ns="http://jboss. org/kie/6.0.0/knodul e"/>

In this way the kmodule will contain one single default Ki eBase. All Kie assets stored under the
resources folder, or any of its subfolders, will be compiled and added to it. To trigger the building
of these artifacts it is enough to create a Ki eCont ai ner for them.

org.kie.api.runtime

b
%
o
b

LK A A S A O

KieContainer

getClassLoader() : ClassLoader

getkieBase() : KieBase

getkieBase(String) : KieBase

getReleaseld() : Releaseld

newKieBase(String, KieBaseConfiguration) : KieBase
newKieBase(KieBaseConfiguration) : KieBase

newkieSession(] : KieSession

newkieSession(5tring) : KieSession

newkieSession(String, Environment) ; KieSession

newKieSession(String, Environment, KieSessionConfiguration) : KieSession
newKieSession(String, KieSessionConfiguration) : KieSession
newkieSession{Environment) . KieSession
newkieSession(KieSessionConfiguration) : KieSession
newStatelesskieSession() : StatelesskKieSession
newStatelessKieSession(String) ; StatelessKieSession
newsStatelessKieSession(String, KieSessionConfiguration) : StatelessKieSession
newStatelesskieSession(KieSessionConfiguration) : StatelessKieSession
updateToVersion{Releaseid) : void

verify() : Results

yWorks UML Doclet

Figure 4.5. KieContainer

java.lang

ClasslLoader

String

org.kie.api
KieBase

KieBaseConfiguration

org.kie.api.builder

Releaseld

Results

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

For this simple case it is enough to create a Ki eCont ai ner that reads the files to be built from
the classpath:

Example 4.2. Creating a KieContainer from the classpath

Ki eServi ces ki eServices = KieServices. Factory.get();

75

KIE

Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

Ki eServi ces is the interface from where it possible to access all the Kie building and runtime
facilities:

76

KIE

org.kie.api java.io

KieServices File

“ getCommands(] : KieCommands
. getkieClasspathContainer(] : KieContainer

“ getloggers() : KieLoggers java.lang
% getMarshallers() : KieMarshallers
. getRepasitory(] : KieRepository ClassLoader
“ getResources(] : KleResources -
. getStoreServices() : KieStoreServices String
% newErvironment() : Environment
% newkKieBaseConfiguration() : KieBaseConfiguration
“ newkKieBaseConfiguration(Properties, ClassLoader] : KieBaseConfiguration java.util
‘. newkKieBuilder{File) : KieBuilder
. newkieBuilder(kKieFileSystem) : KieBuilder Properties
% newkKieContainer(Releaseld) : KieContainer
“ hewkKieFileSystemi) : KieFileSystem
“ newkKieMaduleModel() : KieModuleMode! org.kie.api
“ newkieScanner(KieContainer) : KieScanner
“ newkieSessionConfiguration() : KieSessionConfiguration KieBaseConfiguration
% newkKieSessionConfiguration(Properties) : KieSessionConfiguration
“ newReleaseld(String, String, String) : Releaseld
org.kie.api.builder
KieBuilder
KieFileSystem
KieRepository
KieScanner
Releaseld
org.kie.api.builder.model
KieModuleModel
org.kie.api.command
KieCommands
org.kie.api.io
KieResources
org.kie.api.logger
KieLoggers
org.kie.api.marshalling
KieMarshallers
Figure 4.6. KieServices org.kie.api.persistence.jpa

KieStoreServices

org.kie.api.runtime

Environment

KIE

In this way all the Java sources and the Kie resources are compiled and deployed into the KieCon-
tainer which makes its contents available for use at runtime.

4.2.2.2. The kmodule.xml file

As explained in the former section, the kmodule.xml file is the place where it is possible to declar-
atively configure the Ki eBase(s) and Ki eSessi on(s) that can be created from a KIE project.

In particular a Ki eBase is a repository of all the application's knowledge definitions. It will contain
rules, processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. Creating the Ki eBase can be heavy, whereas session creation is very
light, so it is recommended that Ki eBase be cached where possible to allow for repeated session
creation. However end-users usually shouldn't worry about it, because this caching mechanism
is already automatically provided by the Ki eCont ai ner .

78

KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.7. KieBase

Conversely the Ki eSessi on stores and executes on the runtime data. It is created from the
Ki eBase or more easily can be created directly from the Ki eCont ai ner if it has been defined in
the kmodule.xml file

79

KIE

org.kie.api.runtime

' CommandExecutor | | KieRuntime |

B

B

org.kie.api.runtime.process

| statefulProcessSession |

L

org.kie.api.runtime.rule

| statefulRuleSession |

&

org.kie/api.runtime

KieSession

. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.8. KieSession

The kmodule.xml allows to define and configure one or more Ki eBases and for each Ki eBase all
the different Ki eSessi ons that can be created from it, as showed by the follwing example:

Example 4.3. A sample kmodule.xml file

<kmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://jboss. org/ ki e/ 6.0.0/ knodul e">

<configuration>

<propertykey="drool s. eval uat or. super set O "val ue="or g. myconpany. Super set O Eval uat or Defi ni ti on"/

>
</ confi gurati on>

<kbase name="KBasel" defaul t="true" eventProcessi nghbde="cl oud" equal sBehavi or="equal i ty" decl arati veAgenda="en:

<ksessi on nanme="KSession2_1" type="stateful" default="true"/>

<ksessi on nanme="KSession2_2" type="statel ess" default="fal se"

</ kbase>

bel i ef System="j tns"/ >

nelness KBd sel't ="dvand & ocessi ngvbde=" stquedisiBehavi or =" equiEdl tay'at i veAgenda=" ematuked/es="or g. domai n. pkg2
or g. donai n. pkg3" incl udes="KBasel">

<ksessi on nanme="KSession3_1" type="stateful" default="fal se" cl ockType="real ti ne">

<fileLogger file="drools.log" threaded="true" interval ="10"/>

<wor kI t enHandl er s>

<wor kI t enHandl er

</ wor kIl t enHandl er s>

<listeners>

name="nane" type="org.domai n. WrkltenHandl er"/>

<rul eRunti meEvent Li st ener type="org. domai n. Rul eRunti neLi stener"/>
<agendaEvent Li stener type="org. donain. Fi r st AgendalLi stener"/>
<agendaEvent Li stener type="org.donmai n. SecondAgendali st ener"/>
<processEvent Li stener type="org.domai n. ProcessLi stener"/>

</listeners>
</ ksessi on>
</ kbase>
</ kmodul e>

Here the <configuration> tag contains a list of key-value pairs that are the optional proper-
ties used to configure the Ki eBases building process. For instance this sample kmodule.xml

80

KIE

file defines an additional custom operator named superset™f and implemented by the
or g. nyconpany. Super set Of Eval uat or Def i ni ti on class.

After this 2 Ki eBases have been defined and it is possible to instance 2 different types of Ki eSes-
si ons from the first one, while only one from the second. A list of the attributes that can be defined
on the kbase tag, together with their meaning and default values follows:

Table 4.1. kbase Attributes

Attribute name Default value Admitted values Meaning

name none any The name with which
retrieve this KieBase
from the KieContain-
er. This is the only
mandatory attribute.

includes none any comma separated A comma separated
list list of other KieBas-

es contained in this

kmodule. The artifacts

of all these KieBases

will be also included in

this one.
packages all any comma separated By default all the
list Drools artifacts un-

der the resources
folder, at any lev-
el, are included into
the KieBase. This at-
tribute allows to lim-
it the artifacts that will
be compiled in this
KieBase to only the
ones belonging to the
list of packages.

default false true, false Defines if this KieBase
is the default one
for this module, so it
can be created from
the KieContainer with-
out passing any name
to it. There can be
at most one default
KieBase in each mod-
ule.

81

KIE

Attribute name Default value Admitted values

equalsBehavior identity identity, equality

Meaning

Defines the behav-
ior of Drools when
a new fact is insert-
ed into the Working
Memory. With identi-
ty it always create a
new FactHandle un-
less the same object
isn't already presentin
the Working Memory,
while with equality on-
ly if the newly insert-
ed object is not equal
(according to its equal
method) to an already
existing fact.

eventProcessing- cloud cloud, stream
Mode

When compiled in
cloud mode the
KieBase treats events
as normal facts, while
in stream mode allow
temporal reasoning on
them.

declarativeAgenda disabled disabled, enabled

Defines if the Declar-
ative Agenda is en-
abled or not.

Similarly all attributes of the ksession tag (except of course the name) have meaningful default.

They are listed and described in the following table:

Table 4.2. ksession Attributes

Attribute name Default value Admitted values

Meaning

name none any

Unique name of this
KieSession. Used to
fetch the KieSession
from the KieContain-
er. This is the only
mandatory attribute.

type stateful stateful, stateless

A stateful session
allows to iteratively
work with the Working
Memory, while a state-

82

KIE

Attribute name

default

Default value

false

Admitted values

true, false

Meaning

less one is a one-off
execution of a Work-
ing Memory with a pro-
vided data set.

Defines if this KieSes-
sion is the default one
for this module, so it
can be created from
the KieContainer with-
out passing any name
to it. In each module
there can be at most
one default KieSes-
sion for each type.

clockType

realtime

realtime, pseudo

Defines if events time-
stamps are deter-
mined by the system
clock or by a psuedo
clock controlled by the
application. This clock
is specially useful for
unit testing temporal
rules.

beliefSystem

simple

simple, jtms, defeasi-
ble

Defines the type of be-
lief system used by the
KieSession.

As outlined in the former kmodule.xml sample, it is also possible to declaratively create on each
Ki eSessi on a file (or a console) logger, one or more Wor kl t enHandl ers and some listeners
that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and processEv-

entListener

Having defined a kmodule.xml like the one in the former sample, it is now possible to simply
retrieve the KieBases and KieSessions from the KieContainer using their names.

Example 4.4. Retriving KieBases and KieSessions from the KieContainer

Ki eSer vi ces ki eServi ces
Ki eCont ai ner kCont ai ner

= Ki eServices. Factory.get();
= ki eServi ces. get Ki ed asspat hCont ai ner () ;

Ki eBase kBasel = kCont ai ner. get Ki eBase("KBasel");
Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSessi on("KSessi on2_1");
St at el essKi eSessi on ki eSessi on2 = kCont ai ner. newSt at el essKi eSessi on("KSessi on2_2");

83

KIE

It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first
is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the
Ki eCont ai ner according to their declared type. If the type of the Ki eSessi on requested to the
Ki eCont ai ner doesn't correspond with the one declared in the kmodule.xml file the Ki eCont ai ner
will throw a Runt i meExcept i on. Also since a Ki eBase and a Ki eSessi on have been flagged as
default is it possible to get them from the Ki eCont ai ner without passing any name.

Example 4.5. Retriving default KieBases and KieSessions from the
KieContainer

Ki eCont ai ner kContai ner = ..

Ki eBase kBasel = kContai ner.getKi eBase(); // returns KBasel
Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSession(); // returns KSession2_1

Since a Kie project is also a Maven project the groupld, artifactld and version declared in the
pom.xml file are used to generate a Rel easel d that uniquely identifies this project inside your
application. This allows creation of a new KieContainer from the project by simply passing its
Rel easel d to the Ki eSer vi ces.

Example 4.6. Creating a KieContainer of an existing project by Releaseld

Ki eServi ces ki eServices = KieServices. Factory.get();
Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acnme", "nyartifact", "1.0")
Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld)

4.2.2.3. Building with Maven

The KIE plugin for Maven ensures that artifact resources are validated and pre-compiled, it is
recommended that this is used at all times. To use the plugin simply add it to the build section
of the Maven pom.xml

Example 4.7. Adding the KIE plugin to a Maven pom.xml

<bui I d>
<pl ugi ns>
<pl ugi n>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>ki e-maven-plugin</artifactld>
<ver si on>${ proj ect. versi on} </ ver si on>
<ext ensi ons>t rue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

84

KIE

Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting
JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there
are compilation issues it will return a null KieContainer. It also pushes the compilation overhead
to the runtime. In general this is not recommended, and the Maven plugin should always be used.

4.2.2.4. Defining a KieModule programmatically

It is also possible to define the Ki eBases and Ki eSessi ons belonging to a KieModule program-
matically instead of the declarative definition in the kmodule.xml file. The same programmatic API
also allows in explicitly adding the file containing the Kie artifacts instead of automatically read
them from the resources folder of your project. To do that it is necessary to create a Ki eFi | eSys-
t em a sort of virtual file system, and add all the resources contained in your project to it.

org.kie.api.builder java.lang

KieFileSystem String

% delete(String...) : void

generatedndWntePomXML{Releaseld) : KieFileSystem

read(String) : byte[] org.kie.api.builder
write(String, bytel]) : KieFileSystem

write(String, String) : KieFileSystem Releaseld
write(String, Resource) : KieFileSystem

write(Resource) : KieFileSystem

writeKModuleXML(byte[]) : KieFileSystem org.kie.api.io
writekModuleXML(String) : KieFileSystem

writePomXML(byte[]) : KieFlleSystem Resource
writePomXML(String) : KieFileSystem

‘A AR A A

wWorks UML Doclet

Figure 4.9. KieFileSystem

Like all other Kie core components you can obtain an instance of the Ki eFi | eSyst emfrom the
Ki eServi ces. The kmodule.xml configuration file must be added to the filesystem. This is a
mandatory step. Kie also provides a convenient fluent API, implemented by the Ki eMbdul eModel ,
to programmatically create this file.

85

KIE

org.kie.api.builder.model java.lang

KieModuleModel String

“ getkieBaseModels() : Map=5String, KieBaseModel=
“ newkieBaseModel(String) : KieBaseMaode!
. removekieBaseModel{String) : void java.util

% feXML() : String
Map<K, V>

org.kie.api.builder.model

KieBaseModel

yWorks LML Doclet

Figure 4.10. KieModuleModel

To do this in practice it is necessary to create a Ki eMbdul eModel from the Ki eSer vi ces, config-
ure it with the desired Ki eBases and Ki eSessi ons, convert it in XML and add the XML to the
Ki eFi | eSyst em This process is shown by the following example:

Example 4.8. Creating a kmodule.xm| programmatically and adding it to a
KieFileSystem

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eMbdul eMbdel ki eModul eMbdel = ki eServi ces. newKi eMbdul eMobdel () ;

Ki eBaseMbdel ki eBaseMbdel 1 = ki eMbdul eModel . newKki eBaseModel ("KBasel ")
.setDefault(true)
. set Equal sBehavi or (Equal i t yBehavi or Opti on. EQUALI TY)
. set Event Processi nghbde(Event Processi ngOpti on. STREAM) ;

Ki eSessi onMbdel ksessi onWbdel 1 = ki eBaseMddel 1. newKi eSessi onwbdel (" KSessi onl")
.setDefault(true)
.set Type(Ki eSessi onMbdel . Ki eSessi onType. STATEFUL)
.set O ockType(O ockTypeOption.get("realtinme"));

Ki eFi | eSystem kfs = ki eServi ces. newKi eFi | eSysten();
kfs.witeKMdul eXM (ki eModul eMbdel .t oXM.());

At this point it is also necessary to add to the Ki eFi | eSyst em through its fluent API, all others
Kie artifacts composing your project. These artifacts have to be added in the same position of a
corresponding usual Maven project.

86

KIE

Example 4.9. Adding Kie artifacts to a KieFileSystem

Ki eFil eSystem kfs = ...
kfs.wite("src/nmain/resources/KBasel/ruleSetl.drl", stringContainingAvali dDRL)
.write("src/main/resources/dtable.xls",
ki eSer vi ces. get Resour ces() . newl nput St r eanResour ce(dtabl eFileStream));

This example shows that it is possible to add the Kie artifacts both as plain Strings and as Re-
sour ces. In the latter case the Resour ces can be created by the Ki eResour ces factory, also
provided by the Ki eSer vi ces. The Ki eResour ces provides many convenient factory methods to
convertan I nput Stream a URL, a Fi | e, or a Stri ng representing a path of your file system to a
Resour ce that can be managed by the Ki eFi | eSyst em

87

KIE

org.kie.api
Service
org.kie.api.io java.io
KieResources File
. newBytedrrayResource(byte(]) : Resource
“ newClassPathResource(String) : Resource InputStream
“ newClassPathResource(String, Class=7=) : Resource e
% hewClassPathResource(String, ClassLoader) : Resource "
“ newClassPathResource(String, String) : Resource
“ newClassPathResource(String, String, Class<=P=) : Resource
“ newClassPathResource(String, String, ClassLoader) : Resource java.lang
% newDescrResource(KieDescr) : Resource
“. hewFileSystemAesource(File) : Resource Class<T>
newFileSystemResource(String) : Resource
- 4 g Classl oader
“ newlnputStreamResource(lnputStream) : Resource
% hewlnputStreamResource(inputStream, String) : Resource String
“ newReaderResource{Reader) : Resource
“ newReaderResource(Reader, String) : Resource
“ newlriResource(Stning) : Resource
“ newUrlResource(URL) : Resource Java.net
URL

org.kie.api.definition

KieDescr

org.kie,api.io

Resource

yWorks UML Doclet

Figure 4.11. KieResources

Normally the type of a Resource can be inferred from the extension of the name used to add
it to the Ki eFi | eSyst em However it also possible to not follow the Kie conventions about file
extensions and explicitly assign a specific Resour ceType to a Resour ce as shown below:

88

KIE

Example 4.10. Creating and adding a Resource with an explicit type

Ki eFil eSystem kfs = ...
kfs.wite("src/nain/resources/nyDrl.txt",
ki eServi ces. get Resources() . new nput St reanResource(drl Stream)
. set Resour ceType(Resour ceType. DRL));

Add all the resources to the Ki eFi | eSyst emand build it by passing the Ki eFi | eSystemto a
Ki eBui | der

org.kie.api.builder org.kie.api.builder

KieBuilder KieModule

& buildAlll) : KieBuilder

W getkieModule() : KieModule Results

“ getResults() : Results

. setDependencies(KieModule...) : KieBuilder

. setDependencies{Resource...) : KieBuilder org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.12. KieBuilder

When the contents of a Ki eFi | eSyst emare successfully built, the resulting Ki eMbdul e is auto-
matically added to the Ki eReposi t ory. The Ki eReposi t ory is a singleton acting as a repository
for all the available Ki eMbdul es.

89

KIE

org.kie.api.builder org.kie.api.builder
KieRepository KieModule
. addkieModule(KieModule) : vaid
. addkieModule(Resource, Resource...) : KieModule Releaseld
. getDefaultReleaseld(] : Releasald
. getkieModule(Releaseld) : KieModule
org.kie.api.io
Resource

yWorks UML Doclet

Figure 4.13. KieRepository

After this it is possible to create through the Ki eSer vi ces anew Ki eCont ai ner for that Ki eMbdul e
using its Rel easel d. However, since in this case the Ki eFi | eSyst emdoesn't contain any pom.xml
file (it is possible to add one using the Ki eFi | eSyst em wri t ePomXM. method), Kie cannot deter-
mine the Rel easel d of the Ki eMbdul e and assign to it a default one. This default Rel easel d can
be obtained from the Ki eReposi t ory and used to identify the Ki eMbdul e inside the Ki eReposi -
t ory itself. The following example shows this whole process.

Example 4.11. Building the contents of a KieFileSystem and creating a
KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory.get();

Ki eFil eSystem kfs = ...

ki eServi ces. newKi eBui | der (kfs).buildAIl();

Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner (ki eServi ces. get Reposi tory().get Def aul t Rel easel d());

At this point it is possible to get Ki eBases and create new Ki eSessi ons from this Ki eCont ai ner
exactly in the same way as in the case of a Ki eCont ai ner created directly from the classpath.

It is a best practice to check the compilation results. The Ki eBui | der reports compilation results
of 3 different severities: ERROR, WARNING and INFO. An ERROR indicates that the compila-
tion of the project failed and in the case no Ki eMbdul e is produced and nothing is added to the
Ki eReposi t ory. WARNING and INFO results can be ignored, but are available for inspection.

Example 4.12. Checking that a compilation didn't produce any error

Ki eBui | der ki eBui |l der = ki eServi ces. newKi eBui | der(kfs).buildAII();
assert Equal s(0, kieBuil der.getResults().getMessages(Message. Level . ERROR). size());

90

KIE

4.2.2.5. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,
when a new rule with the same name of an existing rule is added to a package, the default behavior
is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most
use cases, but in some deployments the user might want to prevent the rule update and report
it as an error.

Changing the default severity for a result type, configured like any other option in Drools, can be
done by API calls, system properties or configuration files. As of this version, Drools supports
configurable result severity for rule updates and function updates. To configure it using system
properties or configuration files, the user has to use the following properties:

Example 4.13. Setting the severity using properties

/] sets the severity of rule updatesdrools.kbuilder.severity.duplicateRule = <INFQ WARNI NG
ERROR>// sets the severity of function updatesdrools. kbuil der. severity. duplicateFunction = <I NFQ
WARNI NG ERROR>

updat esdr ool s. kbui | der. severity. duplicateRule =
<I NFQ WARNI NG ERROR>// sets the severity of
function updat esdrool s. kbui | der. severity. duplicateFunction =

4.2.3. Deploying

4.2.3.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead, ses-
sions are created from the Ki eBase into which data can be inserted and from which process in-
stances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

91

KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.14. KieBase

Sometimes, for instance in a OSGi environment, the Ki eBase needs to resolve types that are not
in the default class loader. In this case it will be necessary to create a Ki eBaseConfi gurati on
with an additional class loader and pass it to Ki eCont ai ner when creating a new Ki eBase from it.

92

KIE

Example 4.14. Creating a new KieBase with a custom ClassLoader

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eBaseConfi gurati on kbaseConf = ki eServi ces. newKi eBaseConfiguration(null, MType.class.getC assLoader());
Ki eBase kbase = ki eCont ai ner. newKi eBase(kbaseConf);

4.2.3.2. KieSessions and KieBase Modifications

KieSessions will be discussed in more detail in section "Running”. The Ki eBase creates and re-
turns Ki eSessi on objects, and it may optionally keep references to those. When Ki eBase modi-
fications occur those modifications are applied against the data in the sessions. This reference is
a weak reference and it is also optional, which is controlled by a boolean flag.

4.2.3.3. KieScanner

The Ki eScanner allows continuous monitoring of your Maven repository to check whether a new
release of a Kie project has been installed. A new release is deployed in the Ki eCont ai ner wrap-
ping that project. The use of the Ki eScanner requires kie-ci.jar to be on the classpath.

org.kie.api.builder

KieScanner

% scanNowl() : void
% start(long) : void
% stop() : void

yWorks UML Doclet

Figure 4.15. KieScanner

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 4.15. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = KieServices. Factory.get();

Rel easel d rel easel d = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0- SNAPSHOT");
Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

93

KIE

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possi-
ble to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds in the
Maven repository an updated version of the Kie project used by that Ki eCont ai ner it automati-
cally downloads the new version and triggers an incremental build of the new project. From this
moment all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new
project version.

The Ki eScanner will only pickup changes to deployed jars if it is using a SNAPSHOT, version
range, the LATEST, or the RELEASE setting. Fixed versions will not automatically update at run-
time.

4.2.3.4. Maven Versions and Dependencies

Maven supports a number of mechanisms to manage versioning and dependencies within appli-
cations. Modules can be published with specific version numbers, or they can use the SNAPSHOT
suffix. Dependencies can specify version ranges to consume, or take avantage of SNAPSHOT
mechanism.

StackOverflow provides a very good description for this, which is reproduced below.

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-
dependency [http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-lat-
est-version-of-a-dependency]

If you always want to use the newest version, Maven has two keywords you can use as an alter-
native to version ranges. You should use these options with care as you are no longer in control
of the plugins/dependencies you are using.

When you depend on a plugin or a dependency, you can use the a version value of LATEST
or RELEASE. LATEST refers to the latest released or snapshot version of a particular artifact,
the most recently deployed artifact in a particular repository. RELEASE refers to the last non-
snapshot release in the repository. In general, it is not a best practice to design software which
depends on a non-specific version of an artifact. If you are developing software, you might want
to use RELEASE or LATEST as a convenience so that you don't have to update version numbers
when a new release of a third-party library is released. When you release software, you should
always make sure that your project depends on specific versions to reduce the chances of your
build or your project being affected by a software release not under your control. Use LATEST
and RELEASE with caution, if at all.

See the POM Syntax section of the Maven book for more details.

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
[http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html]

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-
dependencies.html

Here's an example illustrating the various options. In the Maven repository, com.foo:my-foo has
the following metadata:

94

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html

KIE

<net adat a>
<gr oupl d>com f oo</ gr oupl d>
<artifactld>ny-foo</artifactld>
<versi on>2. 0. 0</ ver si on>
<ver si oni ng>
<rel ease>1. 1. 1</ rel ease>
<ver si ons>
<ver si on>1. 0</ ver si on>
<versi on>1. 0. 1</ ver si on>
<ver si on>1. 1</ versi on>
<versi on>1. 1. 1</ ver si on>
<versi on>2. 0. 0</ ver si on>
</versions>
<l ast Updat ed>20090722140000</ | ast Updat ed>
</ ver si oni ng>
</ met adat a>

If a dependency on that artifact is required, you have the following options (other version ranges
can be specified of course, just showing the relevant ones here): Declare an exact version (will
always resolve to 1.0.1):

<version>[1.0. 1] </ versi on>

Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven
will select a matching version):

<version>1. 0. 1</ versi on>

Declare a version range for all 1.x (will currently resolve to 1.1.1):

<version>[1. 0.0, 2.0.0)</versi on>

Declare an open-ended version range (will resolve to 2.0.0):

<version>[1.0.0,)</version>

Declare the version as LATEST (will resolve to 2.0.0):

<ver si on>LATEST</ ver si on>

Declare the version as RELEASE (will resolve to 1.1.1):

95

KIE

<ver si on>RELEASE</ ver si on>

Note that by default your own deployments will update the "latest”" entry in the Maven metadata,
but to update the "release" entry, you need to activate the "release-profile" from the Maven super
POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"

4.2.3.5. Settings.xml and Remote Repository Setup

The maven settings.xml is used to configure Maven execution. Detailed instructions can be found
at the Maven website:

http://maven.apache.org/settings.html

The settings.xml file can be located in 3 locations, the actual settings used is a merge of those
3 locations.

e The Maven install: $M2_HOVE/ conf/ set ti ngs. xni

e Auser'sinstall: ${user. home}/. n2/ setti ngs. xm

 Folder location specified by the system property ki e. maven. set ti ngs. cust om

The settings.xml is used to specify the location of remote repositories. It is important that you
activate the profile that specifies the remote repository, typically this can be done using "active-
ByDefault":

<profil es>
<profile>
<id>profile-1</id>
<activation>
<activeByDef aul t >t rue</ acti veByDef aul t >
</ activation>

</profile>
</ profiles>

Maven provides detailed documentation on using multiple remote repositories:

http://maven.apache.org/guides/mini/guide-multiple-repositories.htmi

4.2.4. Running

4.2.4.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead, ses-

96

http://maven.apache.org/settings.html
http://maven.apache.org/guides/mini/guide-multiple-repositories.html

KIE

sions are created from the Ki eBase into which data can be inserted and from which process in-
stances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

Example 4.16. Getting a KieBase from a KieContainer

Ki eBase kBase = kCont ai ner. get Ki eBase() ;

4.2.4.2. KieSession

The Ki eSessi on stores and executes on the runtime data. It is created from the Ki eBase.

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

CommandExecutor | | KieRuntime StatefulProcessSession StatefulRuleSession

org.kie./api.runtime

KieSession

. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.16. KieSession

Example 4.17. Create a KieSession from a KieBase

Ki eSessi on ksession = kbase. newKi eSessi on();

4.2.4.3. KieRuntime

4.2.4.3.1. KieRuntime

The Ki eRunt i me provides methods that are applicable to both rules and processes, such as setting
globals and registering channels. ("Exit point" is an obsolete synonym for "channel".)

97

KIE

org.kie.api.event org.kie.api.runtime.process org.kie.api.runtime.rule
KieRuntimeEventManager ProcessRuntime RuleRuntime
org.kie.api.runtime java.lang
KieRuntime Object

. getCalendars() : Calendars

. getChannels() : Map=5String, Channel= String

‘% getErvironment() : Environment

“ getGlobal(String) : Object

% getGlobals() : Globals java.util

“ getkieBase() : KieBase

< getSessionClock() : <T extends SessionClock= T Map<K, V>

“ getSessionConfiguration() : KieSessionConfiguration
“ registerChannel(String, Channel) : void
«. setGlobal(String, Object] : void org.kie.api

“ unregisterChannel{String) : void
KieBase

org.kie.api.runtime

Calendars
Channel
Environment
Globals

KieSessionConfiguration

yWorks UML Doclet

Figure 4.17. KieRuntime
4.2.4.3.1.1. Globals

Globals are named objects that are made visible to the rule engine, but in a way that is funda-
mentally different from the one for facts: changes in the object backing a global do not trigger
reevaluation of rules. Still, globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine.
When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect
changes to have any effect on the behavior of your rules.

A global must be declared in a rules file, and then it needs to be backed up with a Java object.

global java.util.List Iist

98

KIE

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call
ksessi on. set d obal () with the global's name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in
an exception being thrown from this call.

List list = new ArrayList();
ksession.setd obal ("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results
in a Nul | Poi nt er Except i on.

4.2.4.4. Event Model

The event package provides means to be notified of rule engine events, including rules firing,
objects being asserted, etc. This allows separation of logging and auditing activities from the main
part of your application (and the rules).

The Ki eRunti neEvent Manager interface is implemented by the Ki eRunti ne which provides
two interfaces, Rul eRunt i meEvent Manager and Pr ocessEvent Manager . We will only cover the
Rul eRunt i meEvent Manager here.

org.kie.api.event.process org.kie.api.event.rule
ProcessEventManager RuleRuntimeEventManager
org.kie.api.event org.kie.api.logger
KieRuntimeEventManager KieRuntimeLogger

w getlogger() : KieRuntimelogger

yWorks UML Doclet

Figure 4.18. KieRuntimeEventManager

The Rul eRunt i neEvent Manager allows for listeners to be added and removed, so that events for
the working memory and the agenda can be listened to.

99

KIE

org.kie.api.event.rule java. util

RuleRuntimeEventManager Collection<E>

. addEventListener(AgendaEventListener) : void
“ addEventListener(RuleRuntimeEventListener) : void

“ getdgendaEventlisteners() : Collection=AgendaEventlistener= org.kie.api.event.rule
“ getRuleRuntimeEventLlistenersi) : Collection=RuleRuntimeEventListener=
. removeEventListener(AgendaEventListener) : void AgendaEventListener

. removeEventlistener(RuleRuntimeEventlistaner) : void - :
RuleRuntimeEventListener

yWorks UML Doclet

Figure 4.19. RuleRuntimeEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a
session. It will print matches after they have fired.

Example 4.18. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li st ener () {
public void afterMtchFired(AfterVatchFiredEvent event) {
super. after Mat chFired(event);
Systemout. println(event);

5)s

Drools also provides DebugRul eRunt i meEvent Li st ener and DebugAgendaEvent Li st ener which
implement each method with a debug print statement. To print all Working Memory events, you
add a listener like this:

Example 4.19. Adding a DebugRuleRuntimeEventListener

ksessi on. addEvent Li st ener (new DebugRul eRunti neEvent Li stener());

All emitted events implement the Ki eRunt i neEvent interface which can be used to retrieve the
actual Know egeRunt i me the event originated from.

100

KIE

org.kie.api.event

KieRuntimeEvent

“ getkKieRuntime(] : KieRuntime

yWorks UML Doclet

Figure 4.20. KieRuntimeEvent

The events currently supported are:

* MatchCreatedEvent

» MatchCancelledEvent

» BeforeMatchFiredEvent

+ AfterMatchFiredEvent

» AgendaGroupPushedEvent
» AgendaGroupPoppedEvent
* ObjectinsertEvent

« ObjectDeletedEvent

* ObjectUpdatedEvent

» ProcessCompletedEvent

* ProcessNodeLeftEvent

» ProcessNodeTriggeredEvent

¢ ProcessStartEvent

4.2.4.5. KieRuntimeLogger

org.kie.api.runtime

KieRuntime

The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log
that can be used to log the execution of an application for later inspection, using tools such as

the Eclipse audit viewer.

101

KIE

org.kie.api.logger java.lang

KieLoggers String

. newConsoleLogger(KieRuntimeEventManager) : KieRuntimeLogger
“ newFileLogger(KieRuntimeEventManager, String) . KieRuntimelLogger
< newThreadedFileLogger(KieRuntimeEventManager, String, int) : KieRuntimelLogger org.kie.api.event

KieRuntimeEventManager

org.kie,api.logger

KieRuntimeLogger

yWorks UML Doclet

Figure 4.21. KieLoggers

Example 4.20. FileLogger

Ki eRunt i meLogger | ogger =
Ki eServi ces. Factory. get (). get Loggers(). newFi | eLogger (ksession, "logdir/nylogfile");

| ogger . cl ose();

4.2.4.6. Commands and the CommandExecutor

KIE has the concept of stateful or stateless sessions. Stateful sessions have already been cov-
ered, which use the standard KieRuntime, and can be worked with iteratively over time. Stateless
is a one-off execution of a KieRuntime with a provided data set. It may return some results, with
the session being disposed at the end, prohibiting further iterative interactions. You can think of
stateless as treating an engine like a function call with optional return results.

The foundation for this is the CommandExecut or interface, which both the stateful and stateless
interfaces extend. This returns an Execut i onResul ts:

org.kie.api.runtime org.kie.api.command

CommandExecutor Command<T=>

w execute(Command=T=) : <T>T

yWorks UML Doclet

Figure 4.22. CommandExecutor

102

KIE

org.kie.api.runtime java.lang

ExecutionResults Object
% getFactHandle(5tring) : Object

% getldentifiers() : Collection<Stning= String
“ getValue(String) : Object
java.util
Collection<E=>

yWorks UML Doclet

Figure 4.23. ExecutionResults

The ConmandExecut or allows for commands to be executed on those sessions, the only difference
being that the StatelessKieSession executes fireAl | Rul es() at the end before disposing the
session. The commands can be created using the ConmandExecut or .The Javadocs provide the
full list of the allowed comands using the CommandExecut or .

setGlobal and getGlobal are two commands relevant to both Drools and jBPM.

Set Global calls setGlobal underneath. The optional boolean indicates whether the command
should return the global's value as part of the Execut i onResul t s. If true it uses the same name
as the global name. A String can be used instead of the boolean, if an alternative name is desired.

Example 4.21. Set Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();
Executi onResults bresults =

ksessi on. execut e(ConmandFact ory. newSet G obal ("stilton", new Cheese("stilton"), true);
Cheese stilton = bresults.getValue("stilton");

Allows an existing global to be returned. The second optional String argument allows for an alter-
native return name.

Example 4.22. Get Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();
Executi onResults bresults =
ksessi on. execut e(ConmandFactory. getd obal ("stilton");

103

KIE

Cheese stilton = bresults.getValue("stilton");

All the above examples execute single commands. The Bat chExecut i on represents a composite
command, created from a list of commands. It will iterate over the list and execute each command
in turn. This means you can insert some objects, start a process, call fireAllRules and execute a
query, all in a single execut e(. . .) call, which is quite powerful.

The StatelessKieSession will execute fireAl | Rul es() automatically at the end. However the
keen-eyed reader probably has already noticed the Fi r eAl | Rul es command and wondered how
that works with a StatelessKieSession. The Fi r eAl | Rul es command is allowed, and using it will
disable the automatic execution at the end; think of using it as a sort of manual override function.

Any command, in the batch, that has an out identifier set will add its results to the returned Ex-
ecut i onResul t s instance. Let's look at a simple example to see how this works. The example
presented includes command from the Drools and jBPM, for the sake of illustration. They are
covered in more detail in the Drool and jBPM specific sections.

Example 4.23. BatchExecution Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

List cmds = new ArraylList();

cnds. add(CommandFact ory. newl nsert Obj ect (new Cheese("stilton", 1), "stilton"));

cnds. add(ConmandFact ory. newSt art Process("process cheeses"));

cnds. add(ConmandFact ory. newQuery("cheeses"));

Executi onResults bresults = ksession. execute(CommandFact ory. newBat chExecution(cnmds));
Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults gresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the Execut i on-
Resul t s. The query command defaults to use the same identifier as the query name, but it can
also be mapped to a different identifier.

All commands support XML and jSON marshalling using XStream, as well as JAXB marshalling.
This is covered in section Commands API.

4.2.4.7. StatelessKieSession

The St at el essKi eSessi on wraps the Ki eSessi on, instead of extending it. Its main focus is on the
decision service type scenarios. It avoids the need to call di spose() . Stateless sessions do not
support iterative insertions and the method call f i r eAl | Rul es() from Java code; the act of calling
execut e() is a single-shot method that will internally instantiate a Ki eSessi on, add all the user
data and execute user commands, callfi r eAl | Rul es(), and then call di spose() . While the main
way to work with this class is via the Bat chExecut i on (a subinterface of Command) as supported by
the ConmandExecut or interface, two convenience methods are provided for when simple object
insertion is all that's required. The CommandExecut or and Bat chExecut i on are talked about in
detail in their own section.

104

KIE

org.kie.api.event

KieRuntimeEventManager

org.kie,api.runtime

StatelessKieSession
& getChannels() : Map<5tring, Channel>
. getGlobals() : Globals
 getKieBase() : KieBase
% registerChannel(String, Channel] : void
. setGlobal(String, Object) : void
& unregisterChannel(String) : void

yWorks UML Doclet

org.kie,api.runtime org.kie.api.runtime.process

CommandExecutor StatelessProcessSession

java.lang
Object

String

java.util

Map<K, V>

org.kie,api

KieBase

org.kie,api.runtime

Channel

Globals

Figure 4.24. StatelessKieSession

org.kie,api.runtime.rule

StatelessRuleSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 4.24. Simple StatelessKieSession execution with a Collection

St at el essKi eSessi on ksession =
ksessi on. execute(collection);

kbase. newSt at el essKi eSessi on();

If this was done as a single Command it would be as follows:

Example 4.25. Simple StatelessKieSession execution with InsertElements

Command

ksessi on. execut e(CommandFact ory. new nsert El ements(col l ection));

If you wanted to insert the collection itself, and the collection's individual elements, then

ComandFact ory. newl nsert (col | ecti on) would do the job.

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the

105

KIE

XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essKi eSessi on supports globals, scoped in a number of ways. We cover the non-com-
mand way first, as commands are scoped to a specific execution call. Globals can be resolved
in three ways.

» The StatelessKieSession method get d obal s() returns a Globals instance which provides
access to the session's globals. These are shared for all execution calls. Exercise caution re-
garding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 4.26. Session scoped global

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

/1l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set A obal ("hbnSessi on", hibernateSession);

/1 Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

e Using a delegate is another way of global resolution. Assigning a value to a global (with
set @ obal (String, Object)) results in the value being stored in an internal collection map-
ping identifiers to values. Identifiers in this internal collection will have priority over any supplied
delegate. Only if an identifier cannot be found in this internal collection, the delegate global (if
any) will be used.

« The third way of resolving globals is to have execution scoped globals. Here, a Cormand to set
a global is passed to the CommandExecut or .

The CommandExecut or interface also offers the ability to export data via "out” parameters. Inserted
facts, globals and query results can all be returned.

Example 4.27. Out identifiers

/] Set up a list of comrands

Li st cmds = new ArrayList();

cnds. add(CommandFact ory. newSet d obal ("list1", new ArrayList(), true));
cnds. add(ConmandFact ory. newl nsert(new Person("jon", 102), "person"));
cnds. add(CommandFact ory. newQuery(" Get People" "getPeople");

/] Execute the list
Executi onResults results =
ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

/'l Retrieve the ArraylLi st

results.getValue("list1");

/'l Retrieve the inserted Person fact

resul ts. getVal ue("person");

/] Retrieve the query as a QueryResults instance.

106

KIE

resul ts. getVal ue("Get People");

4.2.4.8. Marshalling

The Ki eMar shal | er s are used to marshal and unmarshal KieSessions.

org.kie.api
Service
org.kie.api.marshalling java.lang
KieMarshallers String

< newClassFilterAcceptor(Stringl]) : ObjectMarshallingStrategyAcceptor
% newldentityMarshallingStrategy() : ObjectMarshallingStrategy

“ newldentityMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy org.kie.api
 newMarshaller{KieBase) : Marshaller -
“ newMarshaller{KieBase, ObjectMarshallingStrategyl]) : Marshaller KieBase

“ newSenializeMarshallingStrategy() : ObjectMarshallingStrategy
v newSerializeMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy

org.kie.api.marshalling
Marshaller
ObjectMarshallingStrategy

ObjectMarshallingStrategyAcceptor

yWorks UML Doclet

Figure 4.25. KieMarshallers

An instance of the Ki eMar shal | er s can be retrieved from the Ki eSer vi ces. A simple example
is shown below:

Example 4.28. Simple Marshaller Example

/] ksession is the KieSession

/'l kbase is the KieBase

Byt eAr r ayQut put St r eam baos = new Byt eArrayQut put Strean();

Marshal | er marshal l er = Ki eServices. Factory. get().getMarshall ers().newMarshaller(kbase);
mar shal | er. marshal | (baos, ksession);

baos. cl ose();

However, with marshalling, you will need more flexibility when dealing with referenced user data.
To achieve this use the Obj ect Mar shal | i ngSt r at egy interface. Two implementations are provid-
ed, but users can implement their own. The two supplied strategies are | dent i t yMar shal | i ngS-
trategy andSeri al i zeMarshal | i ngStrat egy. Seri al i zeMarshal | i ngSt r at egy is the default,
as shown in the example above, and it just calls the Seri al i zabl e or Ext er nal i zabl e methods
on a user instance. | denti t yMarshal | i ngStrat egy creates an integer id for each user object
and stores them in a Map, while the id is written to the stream. When unmarshalling it accesses
the I denti t ymar shal | i ngStrat egy map to retrieve the instance. This means that if you use the
I dentityMarshal | i ngStr at egy, itis stateful for the life of the Marshaller instance and will create

107

KIE

ids and keep references to all objects that it attempts to marshal. Below is the code to use an
Identity Marshalling Strategy.

Example 4.29. IdentityMarshallingStrategy

Byt eAr r ayQut put St r eam baos = new Byt eArrayQut put Strean();
Ki eMar shal | ers kMarshal l ers = Ki eServi ces. Factory. get().get Marshallers()
Obj ect Marshal 1 i ngStrategy onms = kMarshal | ers. newl denti tyMarshal i ngStrategy()
Marshal | er marshaller =

kMarshal | ers. newMar shal | er (kbase, new Cbj ect Marshal | i ngStrategy[]{ ons });
marshal | er. marshal | (baos, ksession);
baos. cl ose();

Im most cases, a single strategy is insufficient. For added flexibility, the Coj ect Mar shal | i ngS-
trat egyAccept or interface can be used. This Marshaller has a chain of strategies, and while
reading or writing a user object it iterates the strategies asking if they accept responsibility for
marshalling the user object. One of the provided implementations is Cl assFi | t er Accept or . This
allows strings and wild cards to be used to match class names. The default is "*.*", so in the above
example the Identity Marshalling Strategy is used which has a default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

Example 4.30. IdentityMarshallingStrategy with Acceptor

Byt eArr ayQut put St r eam baos = new Byt eArrayQut put Strean();
Ki eMarshal | ers kMarshal l ers = Ki eServi ces. Factory. get().get Marshallers()
Obj ect Marshal | i ngStrat egyAcceptor identityAcceptor =

kMar shal | ers. newC assFi |l ter Acceptor(new String[] { "org.domain. pkgl.*" });
Obj ect Marshal I ingStrategy identityStrategy =

kMar shal | ers. newl denti tyMarshal | i ngStrategy(identityAcceptor);
Obj ect Marshal I i ngStrategy snms = kMarshal | ers. newSeri al i zeMarshal | i ngStrat egy();
Marshal | er marshaller =

kMar shal | ers. newMar shal | er (kbase,

new Obj ect Marshal lingStrategy[]{ identityStrategy, snms });

marshal | er. marshal | (baos, ksession);
baos. cl ose();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (i.e. some of your rules use timers or calendars)
they are marshallable only if, before you use it, you configure your KieSession to use a trackable
timer job factory manager as follows:

Example 4.31. Configuring a trackable timer job factory manager

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfiguration();
ksconf . set Opti on(Ti ner JobFact oryOpti on. get ("trackabl e"));

108

KIE

KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

4.2.4.9. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.
It is necessary to have some implementation of the Java Transaction API (JTA) installed. For
development purposes the Bitronix Transaction Manager is suggested, as it's simple to set up and
works embedded, but for production use JBoss Transactions is recommended.

Example 4.32. Simple example using transactions

Ki eServi ces ki eServices = KieServices. Factory. get();
Envi ronment env = ki eServi ces. newEnvi ronnent ();
env. set (Envi ronnent Nane. ENTI TY_MANAGER_FACTORY,
Per si st ence. creat eEnti t yManager Factory("enf-nane"));
env. set (Envi r onment Nane. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/'l Ki eSessi onConfiguration may be null, and a default wll be used
Ki eSessi on ksession =
ki eServi ces. get St oreServi ces(). newKi eSessi on(kbase, null, env);

int sessionld = ksession.getld();

User Transaction ut =
(UserTransaction) new Initial Context ().l ookup("java: conp/ User Transaction");
ut . begin();
ksession.insert(datal);
ksession.insert(data2);
ksession. start Process("processl");
ut.commit();

To use a JPA, the Environment must be set with both the Ent i t yManager Fact ory and the Tr ans-
acti onManager . If rollback occurs the ksession state is also rolled back, hence it is possible to
continue to use it after a rollback. To load a previously persisted KieSession you'll need the id,
as shown below:

Example 4.33. Loading a KieSession

Ki eSessi on ksession =
ki eServi ces. get StoreServi ces() .| oadKi eSessi on(sessionld, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Example 4.34. Configuring JPA

<persi stence-unit nane="org. drool s. persi stence.jpa" transaction-type="JTA">

109

KIE

<provi der >or g. hi ber nat e. ej b. Hi ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ Bi t r oni xJTADat aSour ce</ j t a- dat a- sour ce>
<cl ass>org. drool s. persi stence. i nfo. Sessi onl nfo</cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkltem nfo</cl ass>
<properties>
<property nane="hi bernate. di al ect" val ue="org. hi bernate. dial ect. H2Di al ect"/ >
<property name="hi bernate. max_fetch_depth" val ue="3"/>
<property name="hi bernate. hbnRddl . aut 0" val ue="update" />
<property nane="hi bernate. show_sql" val ue="true" />
<property nanme="hi bernate.transacti on. manager _| ookup_cl ass"
val ue="org. hi bernat e. transacti on. BTMIr ansact i onManager Lookup" />
</ properties>
</ per si st ence- uni t >

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be consulted for details. For a quick start, here is the
programmatic approach:

Example 4.35. Configuring JTA DataSource

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce()
ds. set Uni queNane("j dbc/ Bitroni xJTADat aSour ce")
ds. set d assNane("org. h2.jdbcx. JdbcDat aSource")
ds. set MaxPool Si ze(3)

ds. set Al l owLocal Transactions(true)

ds. getDriverProperties().put("user", "sa")

ds. getDriverProperties().put("password", "sasa")

ds. getDriverProperties().put("URL", "jdbc:h2: nem nmydb")
ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a
jndi.properties file to your META-INF folder and add the following line to it:

Example 4.36. JNDI properties

java.nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

110

KIE

4.2.5. Installation and Deployment Cheat Sheets

Content Structuring

There are 3 layers to structure your content.

-~

.

Organization Unit
LS

Projects
GIT GIT GIT
Reposiary Repository Haposiory

Useful GIT System Properties

Organizational Unit
This Is the top level. An installation may have
one ar more organisational units.

Repository

Each Unit can have one or more repositories.

A repository is a physical git repository, stored on disk.
Project

Each project can have one or more projects.

A project forms the deployable unit and compiles
down to a jar. A project can depend on one or more
other project.

org.uberfire.nio.git.dir: Location of the directory .niogit. Defaull: working directory
org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true
org.uberfire.nio.git.daemon.host: If daemon enabled, uses this property as local host identifier.

Default: localhost

org.uberfire.nio.git.daemon.port: Il daemon enabled, uses this property as port number. Default

9418

org.uberfire.nio.git.daemon.upload: If daemon enabled, uses this information to define if it's

possible to push (upload) data to git. Default: true
org.uberfire.metadata.index.dir: Place where lucene .index folder will be stored. Default: working

directory
ra !
"
Projecls Proge hm S m
—
3) .
Projects Frojecls Projects
GIT L "
Repository Regl ¢ =
Crgani2
- 9 GIT GIT Prajacts Projects
Repository Reposilary
\ Organization Unj
GIT GIT
Repositary Rapository
Organization Unit
. y,

KIE Installation

Figure 4.26. Installation Overview

111

KIE

s " s Ty
S
Maven Maven T Maven
Repository Repository H Repaository
(rermote) {local) (local)
& \ ;
mvn install R _ rriv install
1 w Y
v |deploy (i o
L Project Application
' Application Installation /
. KIE Installation J

Maven Repository - Server Side

Built projects are installed into the local maven repository.
Default location: <working-directory=/repositories/kie
Systemn property: org.guvnorm2repo.dir

The repository is exposed via httpd for applications to access.

URL: http:/Vlocalhost:B080/<app context=/maven?/

Example: httpi/flocalhost:B080/kie-drools-wb-6.0.0-5MNAPSHOT-boss-as7.0/
maven2/org/mydomain/prej1/1.0.0/proj1-1.0.0.jar

Maven Repository Location Configuration - Application Side
Applications may specify the remote repositories either in the applications porm.xmil
or via Maven settings.xml.

There are three locations where a settings.xml file may live:
The Maven install: $M2_HOME/conf/settings.xml

A user's install: ${userhome}/. m2/settings.xml
Systern Property for file location: kie.maven.settings.custom

Figure 4.27. Deployment Overview

4.2.6. Build, Deploy and Utilize Examples

The best way to learn the new build system is by example. The source project "drools-exam-
ples-api" contains a number of examples, and can be found at GitHub:

112

KIE

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Each example is described below, the order starts with the simplest (most of the options are
defaulted) and working its way up to more complex use cases.

The Deploy use cases shown below all involve nvn i nstal | . Remote deployment of JARS in
Maven is well covered in Maven literature. Utilize refers to the initial act of loading the resources
and providing access to the KIE runtimes. Where as Run refers to the act of interacting with those
runtimes.

4.2.6.1. Default KieSession

» Project: default-kesession.

« Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a sin-
gle default KieBase. The example shows the retrieval of the default KieSession from the class-
path.

An empty kmodule.xml will produce a single KieBase that includes all files found under resources
path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single
default KieSession. Default means they can be created without knowing their names.

Example 4.37. Author - kmodule.xml

<kmodul e xm ns="http://jboss.org/kie/6.0.0/knodul e"> </ knodul e>

Example 4.38. Build and Install - Maven

nmvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed on-
to the environment classpath. kContainer.newKieSession() creates the default KieSession. Notice
that you no longer need to look up the KieBase, in order to create the KieSession. The KieSession
knows which KieBase it's associated with, and use that, which in this case is the default KieBase.

Example 4.39. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on() ;

113

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

KIE

kSessi on. set d obal ("out", out);
kSessi on. i nsert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

4.2.6.2. Named KieSession

» Project: named-kiesession.

e Summary: kmodule.xml that has one named KieBase and one named KieSession. The exam-
ples shows the retrieval of the named KieSession from the classpath.

kmodule.xml will produce a single named KieBase, 'kbasel' that includes all files found under re-
sources path, be it DRL, BPMN2, XLS etc. KieSession 'ksessionl' is associated with that KieBase
and can be created by name.

Example 4.40. Author - kmodule.xml

<knodul e xm ns="http://jboss. org/kie/6.0.0/knmodul e">
<kbase nane="kbasel">
<ksessi on nane="ksessi onl"/>
</ kbase>
</ kmodul e>

Example 4.41. Build and Install - Maven

nvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed on-
to the environment classpath. This time the KieSession uses the name 'ksessionl'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.

Example 4.42. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. set d obal ("out", out);

kSession.insert(new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

114

KIE

4.2.6.3. KieBase Inheritence

» Project: kiebase-inclusion.

e Summary: 'kmodule.xml' demonstrates that one KieBase can include the resources from an-
other KieBase, from another KieModule. In this case it inherits the named KieBase from the
'name-kiesession' example. The included KieBase can be from the current KieModule or any
other KieModule that is in the pom.xml dependency list.

kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the
KieBase 'kbasel', due to the use of the 'includes' attribute. KieSession 'ksession?2' is associated
with that KieBase and can be created by name.

Example 4.43. Author - kmodule.xml

<kbase nane="kbase2" i ncl udes="kbasel">
<ksessi on nanme="ksessi on2"/>
</ kbase>

This example requires that the previous example, 'named-kiesession’, is built and installed to the
local Maven repository first. Once installed it can be included as a dependency, using the standard
Maven <dependencies> element.

Example 4.44. Author - pom.xml

<project xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4. 0. 0 http:// maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!d>drool s-exanpl es-api </artifactld>
<version>6. 0. 0/ versi on>
</ par ent >

<artifact!|d>ki ebase-inclusion</artifactld>
<nane>Drool s APl exanples - KieBase | ncl usion</nane>

<dependenci es>

<dependency>
<groupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-conpiler</artifactld>

</ dependency>

<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>naned- ki esession</artifactl|d>
<ver si on>6. 0. 0</ ver si on>

</ dependency>

115

KIE

</ dependenci es>

</ proj ect >

Once 'named-kiesession' is built and installed this example can be built and installed as normal.
Again the act of installing, will force the unit tests to run, demonstrating the use case.

Example 4.45. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed on-
to the environment classpath. This time the KieSession uses the name 'ksession2'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with. No-
tice two rules fire this time, showing that KieBase 'kbase2' has included the resources from the
dependency KieBase 'kbasel'.

Example 4.46. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();

Ki eCont ai ner kCont ai ner = ks. get Ki eC asspat hCont ai ner();

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set d obal ("out", out);

kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireAl |l Rul es();

kSessi on. i nsert(new Message("Dave", "Open the pod bay doors, HAL."));
kSession.fireA | Rul es();

4.2.6.4. Multiple KieBases

» Project: 'multiple-kbases.

« Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or KieSes-
sion declarations. Introduces the 'packages' attribute to select the folders for the resources to
be included in the KieBase.

kmodule.xml produces 6 different named KieBases. 'kbasel' includes all resources from the
KieModule. The other KieBases include resources from other selected folders, via the 'packages’
attribute. Note the use of wildcard *', to select this package and all packages below it.

Example 4.47. Author - kmodule.xml

<knodul e xm ns="http://jboss. org/kie/6.0.0/knmodul e">

116

KIE

<kbase name="kbasel">
<ksessi on nanme="ksessi onl"/>
</ kbase>

<kbase name="kbase2" packages="org. sonme. pkg">
<ksessi on name="ksessi on2"/>
</ kbase>

<kbase nanme="kbase3" incl udes="kbase2" packages="org.sone. pkg2">
<ksessi on name="ksessi on3"/>
</ kbase>

<kbase name="kbase4" packages="org. sone. pkg, org.other.pkg">
<ksessi on nanme="ksessi on4"/>
</ kbase>

<kbase nanme="kbase5" packages="org.*">
<ksessi on name="ksessi on5"/>
</ kbase>

<kbase name="kbase6" packages="org.sone.*">
<ksessi on nanme="ksessi on6"/>
</ kbase>
</ knmodul e>

Example 4.48. Build and Install - Maven

nmvn instal

Only part of the example is included below, as there is a test method per KieSession, but each
one is a repetition of the other, with different list expectations.

Example 4.49. Utilize and Run - Java

@est
public void testSinpleKieBase() {
Li st<Integer> list = useKieSession("ksessionl");
/1 no packages inported nmeans inport everything
assert Equal s(4, list.size())
assertTrue(list.containsAll(asList(0, 1, 2, 3)))

/l.. other tests for ksession2 to ksession6 here

private List<lnteger> useKi eSession(String nane) {
Ki eServi ces ks = Ki eServices. Factory. get ()
Ki eCont ai ner kCont ai ner = ks. get Ki eC asspat hCont ai ner () ;
Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on(nane)

Li st<Integer> list = new Arrayli st<Integer>()
kSessi on.setd obal ("list", list);
kSession.insert(1)

117

KIE

kSession. fireAl |l Rul es();

return list;

4.2.6.5. KieContainer from KieRepository

* Project: kcontainer-from-repository

e Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any depen-
dencies for other KieModules. Instead the Java code demonstrates the loading of a dynamic
KieModule from a Maven repository.

The pom.xml must include kie-ci as a depdency, to ensure Maven is available at runtime. As this
uses Maven under the hood you can also use the standard Maven settings.xml file.

Example 4.50. Author - pom.xml

<project xm ns="http://maven. apache. org/ POM 4. 0. 0"
xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocati on="http://maven. apache. org/ POM 4. 0.0 http:// maven. apache. or g/ xsd/
maven-4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<groupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-exanpl es-api </artifactl|d>
<versi on>6. 0. 0</ ver si on>
</ par ent >

<artifactld>ki econtainer-fromkierepo</artifact!d>
<nane>Drool s APl exanples - Ki eContainer from Ki eRepo</nane>

<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-ci</artifactld>
</ dependency>
</ dependenci es>

</ proj ect >

Example 4.51. Build and Install - Maven

mvn instal

In the previous examples the classpath KieContainer used. This example creates a dynamic
KieContainer as specified by the Releaseld. The Releaseld uses Maven conventions for group id,
artifact id and version. It also obeys LATEST and SNAPSHOT for versions.

118

KIE

Example 4.52. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
/'l Install exanplel in the |ocal Maven repo before to do this
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (ks. newRel easel d("or g. drool s", "naned-

ki esession", "6.0.0-SNAPSHOT"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");

kSessi on. i nsert (nsgl);
kSession.fireAl |l Rul es();

4.2.6.6. Default KieSession from File

» Project: default-kiesession-from-file

« Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides default KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.53. Build and Install - Maven

nvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once
deployed in the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci
are needed here. It will not set up a transitive dependency parent classloader.

Example 4.54. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eRepository kr = ks. get Repository();

Ki eMbdul e kMbdul e = kr. addKi eModul e(ks. get Resources(). newFi | eSyst enResource(get Fi | e("defaul t-
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kModul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");

119

KIE

kSessi on. i nsert (nsgl);
kSession.fireAl |l Rul es();

4.2.6.7. Named KieSession from File

» Project: named-kiesession-from-file

e Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides named KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.55. Build and Install - Maven

nmvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in
the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci are needed
here. It will not setup a transitive dependency parent classloader.

Example 4.56. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eReposi tory kr = ks. getRepository();

Ki eMbdul e kMbdule = kr.addKi eModul e(ks. get Resour ces(). newFi | eSyst enResour ce(get Fi | e(" nanmed-
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kModul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl1");
kSessi on. set d obal ("out", out);

Obj ect msgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");
kSessi on. i nsert (nsgl);
kSession.fireA | Rul es();

4.2.6.8. KieModule with Dependent KieModule

* Project: kie-module-form-multiple-files

e Summary: Programmatically provide the list of dependant KieModules, without using Maven to
resolve anything.

120

KIE

No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built
first, so that the resulting JARs, in the target folders, can be referenced as Files.

Example 4.57. Build and Install - Maven

mvn install

Creates two resources. One is for the main KieModule ‘exResl' the other is for the dependency
‘exRes2'. Even though kie-ci is not present and thus Maven is not available to resolve the depen-
dencies, this shows how you can manually specify the dependent KieModules, for the vararg.

Example 4.58. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Resour ce ex1Res = ks. get Resources().newFil eSyst enResource(get Fi | e("ki ebase-inclusion"));
Resour ce ex2Res = ks. get Resources(). newFi | eSyst enResour ce(get Fi | e(" naned- ki esessi on"));

Ki eModul e kibdul e = kr. addKi eModul e(ex1Res, ex2Res);
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kModul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContai ner, "Dave", "Hello, HAL. Do you read ne, HAL?");
kSession. i nsert (nsgl);

kSession.fireA |l Rul es();

Obj ect nsg2 = createMessage(kContai ner, "Dave", "Open the pod bay doors, HAL.");

kSessi on. i nsert (nsg2);
kSession.fireAl |l Rul es();

4.2.6.9. Programmaticaly build a Simple KieModule with Defaults

* Project: kiemoduelmodel-example

e Summary: Programmaticaly buid a KieModule from just a single file. The POM and models are
all defaulted. This is the quickest out of the box approach, but should not be added to a Maven
repository.

Example 4.59. Build and Install - Maven

nmvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, and it adds the relevant resources. A pom.xml is generated from the Releaseld.

121

KIE

Example 4.60. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eRepository kr = ks. get Repository();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();
kfs.wite("src/nain/resources/org/kiel exanpl e5/HAL5. drl ", getRule());
Ki eBui | der kb = ks. newKi eBui | der (kfs);
kb. bui I dAIl (); // kieMddule is automatically deployed to KieRepository if successfully built.
if (kb.getResults().hasMessages(Level . ERROR)) {
throw new Runti neException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kr. get Def aul t Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set d obal ("out", out);

kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read nme, HAL?"));
kSession.fireAl |l Rul es();

4.2.6.10. Programmaticaly build a KieModule using Meta Models

» Project: kiemoduelmodel-example

e Summary: Programmaticaly build a KieModule, by creating its kmodule.xml meta model re-
sources.

Example 4.61. Build and Install - Maven

nmvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, as well as add the relevant resources. A pom.xml is generated from the Re-
leaseld.

Example 4.62. Utilize and Run - Java

Ki eServi ces ks = Ki eServices. Factory. get();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();

Resour ce ex1Res = ks. get Resources().newFi | eSyst enResour ce(get Fi | e("nanmed- ki esession"));
Resour ce ex2Res = ks. get Resour ces(). newFi | eSyst enResour ce(get Fi | e("ki ebase-inclusion"));

Rel easeld rid = ks.newRel easel d("org. drool s", "kienpdul enodel - exanpl e", "6.0.0- SNAPSHOT") ;
kfs. generat eAndWit ePonXM_(ri d);

122

KIE

Ki eMbdul eMbdel kMbdul eMbdel = ks. newKi eMbdul eModel () ;
kMbdul eMbdel . newKi eBaseModel (" ki enodul enodel ")

. addl ncl ude("ki ebasel")

. addl ncl ude("ki ebase2")

. newKi eSessi onMbdel ("ksessi on6");

kfs.witeKMdul eXM.(kMbdul eModel .t oXM_()) ;
kfs.wite("src/ main/resources/ ki enodul enodel / HAL6. drl", getRule());

Ki eBui | der kb = ks. newkKi eBui | der (kfs);
kb. set Dependenci es(ex1Res, ex2Res);
kb. bui IdAIl1 (); // kieMddule is automatically deployed to KieRepository if successfully built.
if (kb.getResults().hasMessages(Level . ERROR)) {
throw new Runti nmeException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner(rid);

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on6") ;
kSessi on. set d obal ("out", out);

Obj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne, HAL?");
kSessi on. i nsert (nmsgl);
kSession.fireAl |l Rul es();

Obj ect nmsg2 = createMessage(kContai ner, "Dave", "Open the pod bay doors, HAL.");
kSessi on. i nsert (nsg2);
kSession.fireA |l Rul es();

Obj ect nsg3 = createMessage(kContai ner, "Dave", "Wat's the problenP");
kSessi on. i nsert (nsg3);
kSession.fireAl |l Rul es();

4.3. Security

4.3.1. Security Manager

The KIE engine is a platform for the modelling and execution of business behavior, using a mul-
titude of declarative abstractions and metaphores, like rules, processes, decision tables and etc.

Many times, the authoring of these metaphores is done by third party groups, be it a different group
inside the same company, a group from a partner company, or even anonymous third parties on
the internet.

Rules and Processes are designed to execute arbitrary code in order to do their job, but in such
cases it might be necessary to constrain what they can do. For instance, it is unlikely a rule should
be allowed to create a classloader (what could open the system to an attack) and certainly it
should not be allowed to make a call to System exit ().

The Java Platform provides a very comprehensive and well defined security framework that allows
users to define policies for what a system can do. The KIE platform leverages that framework
and allow application developers to define a specific policy to be applied to any execution of user
provided code, be it in rules, processes, work item handlers and etc.

123

KIE

4.3.1.1. How to define a KIE Policy

Rules and processes can run with very restrict permissions, but the engine itself needs to perform
many complex operations in order to work. Examples are: it needs to create classloaders, read
system properties, access the file system, etc.

Once a security manager is installed, though, it will apply restrictions to all the code executing
in the JVM according to the defined policy. For that reason, KIE allows the user to define two
different policy files: one for the engine itself and one for the assets deployed into and executed
by the engine.

One easy way to setup the enviroment is to give the engine itself a very permissive policy, while
providing a constrained policy for rules and processes.

Policy files follow the standard policy file syntax as described in the Java documentation. For more
details, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#File Syntax

A permissive policy file for the engine can look like the following:

Example 4.63. A sample engine.policy file

grant {
perm ssion java.security. Al Perm ssion;

}

An example security policy for rules could be:

Example 4.64. A sample rules.policy file

grant {
perm ssion java.util.PropertyPerm ssion "*", "read";
perm ssion java. |l ang. Runti mePerni ssi on "accessDecl aredMenbers";

Please note that depending on what the rules and processes are supposed to do, many more
permissions might need to be granted, like accessing files in the filesystem, databases, etc.

In order to use these policy files, all that is necessary is to execute the application with these files
as parameters to the JVM. Three parameters are required:

Table 4.3. Parameters

Parameter Meaning

-Djava.security.manager Enables the security manager

124

KIE

Parameter Meaning

-Djava.security.policy=<jvm_policy_file> Defines the global policy file to be applied to
the whole application, including the engine

-Dkie.security.policy=<kie_policy_file> Defines the policy file to be applied to rules and
processes

For instance:

j ava - Dj ava. security. nanager -Dj ava. security. policy=gl obal . policy -

Dki e. security. policy=rul es.policy foo.bar. MApp

125

Part Ill. Drools
Runtime and Language

Drools is a powerful Hybrid Reasoning System.

Chapter 5. Hybrid Reasoning

5.1. Artificial Intelligence

5.1.1. A Little History

Over the last few decades artificial intelligence (Al) became an unpopular term, with the
well-known "Al Winter" [http://en.wikipedia.org/wiki/Al_winter]. There were large boasts from
scientists and engineers looking for funding, which never lived up to expectations, re-
sulting in many failed projects. Thinking Machines Corporation [http:/en.wikipedia.org/wi-
ki/Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wi-
ki/Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading Al firms in 1990, it had sales of nearly $65
million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see
and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has
a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/
magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy re-
lationship with Thinking Machines and DARPA [http://en.wikipedia.org/wikiiDARPA] over-heated
the market, to the point of collapse. It explains how and why commerce moved away from Al and
towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next
generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated
circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine
capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,
that caused much of the Al bubble. The 5GP would provide massive multi-cpu parallel processing
hardware along with powerful knowledge representation and reasoning software via Prolog; a
type of expert system. By 1992 the project was considered a failure and cancelled. It was the
largest and most visible commercial venture for Prolog, and many of the failures are pinned on
the problems of trying to run a logic based programming language concurrently on multi CPU
hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog
and relegated it to academia, see "Whatever Happened to Prolog" [http://www.dvorak.org/blog/
whatever-happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term Al became less used, many green shoots
where planted and continued more quietly under discipline specific names: cognitive systems, ma-
chine learning, intelligent systems, knowledge representation and reasoning. Offshoots of these
then made their way into commercial systems, such as expert systems in the Business Rules
Management System (BRMS) market.

127

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Hybrid Reasoning

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have dom-
inated the last 20 years, enabled by the practicality of the languages and ability to run with
good performance on commodity hardware. However many believe there is a renaissance un-
derway in the field of Al, spurred by advances in hardware capabilities and Al research. In 2005
Heather Havenstein authored "Spring comes to Al winter" [http://www.computerworld.com/s/ar-
ticle/99691/Spring_comes_to_Al_winter] which outlines a case for this resurgence. Norvig and
Russel dedicate several pages to what factors allowed the industry to overcome it's problems and
the research that came about as a result:

Recent years have seen a revolution in both the content and the methodology
of work in artificial intelligence. It is now more common to build on existing the-
ories than to propose brand-new ones, to base claims on rigorous theorems or
hard experimental evidence rather than on intuition, and to show relevance to
real-world applications rather than toy examples.

—Atrtificial Intelligence: A Modern Approach

Computer vision, neural networks, machine learning and knowledge representation and reason-
ing (KRR) have made great strides towards becoming practical in commercial environments. For
example, vision-based systems can now fully map out and navigate their environments with strong
recognition skills. As a result we now have self-driving cars about to enter the commercial market.
Ontological research, based around description logic, has provided very rich semantics to repre-
sent our world. Algorithms such as the tableaux algorithm have made it possible to use those
rich semantics effectively in large complex ontologies. Early KRR systems, like Prolog in 5GP,
were dogged by the limited semantic capabilities and memory restrictions on the size of those
ontologies.

5.1.2. Knowledge Representation and Reasoning

In A Little History talks about Al as a broader subject and touches on Knowledge Representation
and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.
Reasoning is about how we go about the act of thinking using this knowledge. System based
object-oriented languages, like C++, Java and C#, have data definitions called classes for de-
scribing the composition and behaviour of modeled entities. In Java we call exemplars of these
described things beans or instances. However those classification systems are limited to ensure
computational efficiency. Over the years researchers have developed increasingly sophisticated
ways to represent our world. Many of you may already have heard of OWL (Web Ontology Lan-
guage). There is always a gap between what can be theoretically represented and what can be
used computationally in practically timely manner, which is why OWL has different sub-languages
from Lite to Full. It is not believed that any reasoning system can support OWL Full. However,
algorithmic advances continue to narrow that gap and improve the expressiveness available to
reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard
discussions comparing the merits of forward chaining, which is reactive and data driven, with

128

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Hybrid Reasoning

backward chaining, which is passive and query driven. Many other types of reasoning techniques
exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a
few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal
reasoning and correlation. You don't need to understand all these terms to understand and use
Drools. They are just there to give an idea of the range of scope of research topics, which is
actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Atrtificial Intelligence. Even when using biological approach-
es like neural networks, which model the brain and are more about pattern recognition than think-
ing, they still build on KRR theory. My first endeavours with Drools were engineering oriented, as
I had no formal training or understanding of KRR. Learning KRR has allowed me to get a much
wider theoretical background. Allowing me to better understand both what I've done and where
I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really is a vast and
fascinating subject that will pay dividends for those who take the time to learn. | know it did and
still does for me. Bracham and Levesque have written a seminal piece of work, called "Knowledge
Representation and Reasoning" that is a must read for anyone wanting to build strong foundations.
I would also recommend the Russel and Norvig book "Artificial Intelligence, a modern approach”
which also covers KRR.

5.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of Al and learnt that the core of Al is formed around KRR.
We've shown than KRR is a vast and fascinating subject which forms the bulk of the theory driving
Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a
high level it has three components:

* Ontology
* Rules
e Data

As previously mentioned the ontology is the representation model we use for our "things". It could
use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,
i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL
based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,
that can be applied to data to produce outcomes. This includes simple systems like form validation
and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by
Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter
a database schema to hold validation rules. The book then shows how to generate Visual Basic
code from those validation rules to validate data entry. While perfectly valid, this is very different
to what we are talking about.

129

Hybrid Reasoning

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was
based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).
The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule
System and is able to scale to a large number of rules and facts. A Production Rule is a two-part
structure: the engine matches facts and data against Production Rules - also called Productions
or just Rules - to infer conclusions which result in actions.

when

<condi tions>
t hen

<actions>;

The process of matching the new or existing facts against Production Rules is called pattern
matching, which is performed by the inference engine. Actions execute in response to changes
in data, like a database trigger; we say this is a data driven approach to reasoning. The actions
themselves can change data, which in turn could match against other rules causing them to fire;
this is referred to as forward chaining

Drools 5.x implements and extends the Rete algorithm. This extended Rete algorithm is named
ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete algo-
rithm for object oriented systems. Other Rete based engines also have marketing terms for their
proprietary enhancements to Rete, like RetePlus and Rete Ill. The most common enhancements
are covered in "Production Matching for Large Learning Systems" (1995) by Robert B. Dooren-
bos' thesis, which presents Rete/UL. Drools 6.x introduces a new lazy algorithm named PHREAK;
which is covered in more detail in the PHEAK algorithm section.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against are kept in the Working Memory. Facts are asserted into the Working Memory where they
may then be modified or retracted. A system with a large number of rules and facts may result in
many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

130

Hybrid Reasoning

Inference Engine
{Rete0O0 / Leaps)

Pattern

ﬁ-
Matcher

mory

les)

Agenda

Figure 5.1. High-level View of a Production Rule System

5.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data
driven) or backward chaining (passive query). Here is a quick explanation of these two main types
of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working
memory, which results in one or more rules being concurrently true and scheduled for execution
by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a
conclusion.

131

Hybrid Reasoning

Fule
Base ““-.I
A Detarmine
- possible rules to
.-'f fire
Working '
Memory
Conflict Set
Y
Conflict
. Rule Selact ,
| Fire Rule |-'l Found @ Eg;gli::[gr?rn
Mo Fule
Found

¥
—Exit If specified by rule ';I et l

Figure 5.2. Forward Chaining

Backward chaining is "goal-driven”, meaning that we start with a conclusion which the engine
tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as
subgoals, that will help satisfy some unknown part of the current goal. It continues this process
until either the initial conclusion is proven or there are no more subgoals. Prolog is an example
of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as
derivation queries.

132

Hybrid Reasoning

Rule
Base “~1
l'-.\ Examine working memaory
e _| and goals to see if goals Working
e . are “"known’” true in Memmory
{ knowledge base
|
Gaal J
I 9
=
=]
|8
2l Retum Do goals
i o True ™ yes match?
R
3|o
=2 |
[M |
8|2 |
3|5 |
m —
| B | Retum
=] F=1 Palee [~ —————1 Mo
a False .
= | (retum false to recursive procedurs)
2 | v
w I
I
| Detarmine next possible
F_"?" each "“'9 | rules to fine by checking
condition, recursively 1 conclusions and goals
backchain with
condition as goal.
Conflict
Fiﬂl:d Resolution
Strategy
Mo Rule
Found
¥ Exit
All rec$
retums rua?

One or maore goals failed, Check next matching rule

als found to be true, axist, retuming true true

L

Figure 5.3. Backward Chaining

133

Hybrid Reasoning

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog
(backward). Nowadays many modern systems provide both types of reasoning capabilities. There
are also many other types of reasoning techniques, each of which enlarges the scope of the
problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty
factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems
are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning
as well as some functional programming styles. For this reason we now prefer the term Hybrid
Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this
will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.
Work is also under way to bring OWL based ontological reasoning, which will integrate with our
traits system. We also continue to improve our functional programming capabilities.

5.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-
like systems. While this is normally acceptable, it's technically incorrect as these are frameworks
to build expert systems with, rather than expert systems themselves. It becomes an expert system
once there is an ontological model to represent the domain and there are facilities for knowledge
acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic
literature, such as the recommended book "Expert Systems" by Peter Jackson.

134

Hybrid Reasoning

Dendral

1970s @@
[Teiresias]f: Emycin] [WM J
[Wheeze] [Clot]
1;805 [Neomycin] [Oncocin}

Figure 5.4. Early History of Expert Systems

5.1.6. Recommended Reading

General Al, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly
recommend the following books. "Atrtificial Intelligence: A Modern Approach” is a must have, for
anyone's bookshelf.

* Introduction to Expert Systems

» Peter Jackson

» Expert Systems: Principles and Programming

135

Hybrid Reasoning

» Joseph C. Giarratano, Gary D. Riley

» Knowledge Representation and Reasoning

* Ronald J. Brachman, Hector J. Levesque

« Artificial Intelligence : A Modern Approach.

» Stuart Russell and Peter Norvig

"~ Expert Systems

EXPERT BRI

| Feler bchrea |

KNOWLEDGE Artificial Inteligence
REPRESENTATION pireleindovien

AND REASONING

Frmald |. Brachman
Hector |. Lisvesque

itilacmal J||I|;||!.:-r|' -
% ik NPT

Figure 5.5. Recommended Reading

136

Hybrid Reasoning

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

* Production Matching for Large Learning Systems: Rete/UL (1993)
* Robert B. Doorenbos
» Advances In Rete Pattern Matching

e Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

Collection-Oriented Match
e Anurag Acharya and Milind Tambe (1993)
* The Leaps Algorithm

« Don Batery (1990)

Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing
e Eric Hanson , Mohammed S. Hasan (1993)
Drools Books

There are currently three Drools books, all from Packt Publishing.

» JBoss Drools Business Rules
» Paul Browne

» Drools JBoss Rules 5.0 Developers Guide
* Michal Bali

» Drools Developer's Cookbook

* Lucas Amador

137

Hybrid Reasoning

JBoss Drools Business Rules Drools JBoss Rules 3.0
Developer's Guide

Drools Developer's
Cookbook

Lucas Amador PACKY ot

Figure 5.6. Recommended Reading

5.2. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in
1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/con-
text/505087/0). The latin word "rete" means "net" or "network". The Rete algorithm can be broken
into 2 parts: rule compilation and runtime execution.

138

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Hybrid Reasoning

The compilation algorithm describes how the Rules in the Production Memory are processed to
generate an efficient discrimination network. In non-technical terms, a discrimination network is
used to filter data as it propagates through the network. The nodes at the top of the network would
have many matches, and as we go down the network, there would be fewer matches. At the very
bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic
nodes: root, 1-input, 2-input and terminal.

ObjectTypeNode ReteMNode

AlphaNode JoinNode

LeftinputAdapterNode

{ \ MotMode
EvalNode

 NON N

TerminalNode

Figure 5.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the Ob-
jectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do more
work than it needs to. For example, say we have 2 objects: Account and Order. If the rule engine
tried to evaluate every single node against every object, it would waste a lot of cycles. To make
things efficient, the engine should only pass the object to the nodes that match the object type.
The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input nodes
descend from it. This way, if an application asserts a new Account, it won't propagate to the nodes
for the Order object. In Drools when an object is asserted it retrieves a list of valid ObjectType-
sNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist it scans all the
ObjectTypeNodes finding valid matches which it caches in the list. This enables Drools to match
against any Class type that matches with an i nst anceof check.

Hybrid Reasoning

ReteNode

Cheese T~ Person

-.f..

Figure 5.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodes. Al-
phaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality
conditions, many RETE implementations support other operations. For example, Account . nane
== "M Trout" is a literal condition. When a rule has multiple literal conditions for a single object
type, they are linked together. This means that if an application asserts an Account object, it must
first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's
paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode
combinations for Cheese(name == "cheddar", strength == "strong"):

Cheese

name == “cheddar”

strength == "strong”

Figure 5.9. AlphaNodes

140

Hybrid Reasoning

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using
hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key
to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType
node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode
from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes. Be-
taNodes are used to compare 2 objects, and their fields, to each other. The objects may be the
same or different types. By convention we refer to the two inputs as left and right. The left input for
a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.
Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left
input is called the Beta Memory and remembers all incoming tuples. The right input is called the
Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing
on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String
field, as each object enters we can do a hash lookup on that String value. This means when facts
enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup
returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the
Object; which is referred to as a partial match; and then propagated to the next node.

141

Hybrid Reasoning

Cheese Person

name == "cheddar"

Person. favouriteCheese ==
Cheese.name

Figure 5.10. JoinNode
To enable the first Object, in the above case Cheese, to enter the network we use a LeftinputN-

odeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we
say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule

generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows
us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rule
when

Cheese($cheddar : nane == "cheddar")

$person : Person(favouriteCheese == $cheddar)
then

142

Hybrid Reasoning

Systemout. println($person.getName() + " |ikes cheddar");
end
rule
when
Cheese($cheddar : nanme == "cheddar")
$person : Person(favouriteCheese != $cheddar)
then
System out. println($person.getName() + " does not |ike cheddar");
end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the
beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the
same it would have also been shared.

143

Hybrid Reasoning

Person

name == “cheddar”

Person. favouriteCheese == |
Cheese.name |
|

/

System.out.printin{ person.getName() + " likes cheddar")
/
)
/S
o
o~

—

Ferson.favouriteCheesea =
Cheesa.name

Figure 5.11. Node Sharing

System.out.printin{ person.getName() + " does not like
cheddar")

Hybrid Reasoning

5.3. ReteOO Algorithm

The ReteOO was developed throughout the 3, 4 and 5 series releases. It takes the RETE algorithm
and applies well known enhancements, all of which are covered by existing academic literature:

Node sharing
« Sharing is applied to both the alpha and beta network. The beta network sharing is always from
the root pattern.

Alpha indexing

» Alpha Nodes with many children use a hash lookup mechanism, to avoid testing each result.

Beta indexing

« Join, Not and Exist nodes indexing their memories using a hash. This reduces the join attempts
for equal checks. Recently range indexing was added to Not and Exists.

Tree based graphs

« Join matches did not contain any references to their parent or children matches. Deletions would
have to recalculate all join matches again, which involves recreating all those join match objects,
to be able to find the parts of the network where the tuples should be deleted. This is called
symmetrical propagation. A tree graph provides parent and children references, so a deletion
is just a matter of following those references. This is asymmetrical propagation. The result is
faster and less impact on the GC, and more robust because changes in values will not cause
memory leaks if they happen without the engine being notified.

Modify-in-place
« Traditional RETE implements a modify as a delete + insert. This causes all join tuples to be GC'd,

many of which are recreated again as part of the insert. Modify-in-place instead propagates as
a single pass, every node is inspected

Property reactive
« Also called "new trigger condition”. Allows more fine grained reactivity to updates. A Pattern can

react to changes to specific properties and ignore others. This alleviates problems of recursion
and also helps with performance.

Sub-networks

* Not, Exists and Accumulate can each have nested conditional elements, which forms sub net-
works.

145

Hybrid Reasoning

Backward Chaining

» Prolog style derivation trees for backward chaining are supported. The implementation is stack
based, so does not have method recursion issues for large graphs.

Lazy Truth Maintenance

« Truth maintenance has a runtime cost, which is incurred whether TMS is used or not. Lazy TMS
only turns it on, on first use. Further it's only turned on for that object type, so other object types
do not incur the runtime cost.

Heap based agenda

« The agenda uses a binary heap queue to sort rule matches by salience, rather than any linear
search or maintenance approach.

Dynamic Rules

* Rules can be added and removed at runtime, while the engine is still populated with data.

5.4. PHREAK Algorithm

Drools 6 introduces a new algorithm, that attempts to address some of the core issues of RETE.
The algorithm is not a rewrite form scratch and incorporates all of the existing code from ReteOO,
and all its enhancements. While PHREAK is an evolution of the RETE algorithm, it is no longer
classified as a RETE implementation. In the same way that once an animal evolves beyond a
certain point and key characteristics are changed, the animal becomes classified as new species.
There are two key RETE characteristics that strongly identify any derivative strains, regardless of
optimizations. That it is an eager, data oriented algorithm. Where all work is doing done the insert,
update or delete actions; eagerly producing all partial matches for all rules. PHREAK in contrast is
characterised as a lazy, goal oriented algorithm; where partial matching is aggressively delayed.

This eagerness of RETE can lead to a lot of churn in large systems, and much wasted work.
Where wasted work is classified as matching efforts that do not result in a rule firing.

PHREAK was heavily inspired by a number of algorithms; including (but not limited to) LEAPS,
RETE/UL and Collection-Oriented Match. PHREAK has all enhancements listed in the ReteOO
section. In addition it adds the following set of enhancements, which are explained in more detail
in the following paragraphs.

» Three layers of contextual memory; Node, Segment and Rule memories.

¢ Rule, segment and node based linking.

* Lazy (delayed) rule evaluation.

146

Hybrid Reasoning

« Isolated rule evaluation.
« Set oriented propagations.
» Stack based evaluations, with pause and resume.

When the PHREAK engine is started all rules are said to be unlinked, no rule evaluation can hap-
pen while rules are unlinked. The insert, update and deletes actions are queued before entering
the beta network. A simple heuristic, based on the rule most likely to result in firings, is used to
select the next rule for evaluation; this delays the evaluation and firing of the other rules. Only
once a rule has all right inputs populated will the rule be considered linked in, although no work
is yet done. Instead a goal is created, that represents the rule, and placed into a priority queue;
which is ordered by salience. Each queue itself is associated with an AgendaGroup. Only the
active AgendaGroup will inspect its queue, popping the goal for the rule with the highest salience
and submitting it for evaluation. So the work done shifts from the insert, update, delete phase to
the fireAllRules phase. Only the rule for which the goal was created is evaluated, other potential
rule evaluations from those facts are delayed. While individual rules are evaluated, node sharing
is still achieved through the process of segmentation, which is explained later.

Each successful join attempt in RETE produces a tuple (or token, or partial match) that will be
propagated to the child nodes. For this reason it is characterised as a tuple oriented algorithm.
For each child node that it reaches it will attempt to join with the other side of the node, again each
successful join attempt will be propagated straight away. This creates a descent recursion effect.
Thrashing the network of nodes as it ripples up and down, left and right from the point of entry
into the beta network to all the reachable leaf nodes.

PHREAK propagation is set oriented (or collection-oriented), instead of tuple oriented. For the rule
being evaluated it will visit the first node and process all queued insert, update and deletes. The
results are added to a set and the set is propagated to the child node. In the child node all queued
inset, update and deletes are processed, adding the results to the same set. Once finished that set
is propagated to the next child node, and so on until the terminal node is reached. This creates a
single pass, pipeline type effect, that is isolated to the current rule being evaluated. This creates a
batch process effect which can provide performance advantages for certain rule constructs; such
as sub-networks with accumulates. In the future it will leans itself to being able to exploit multi-core
machines in a number of ways.

The Linking and Unlinking uses a layered bit mask system, based on a network segmentation.
When the rule network is built segments are created for nodes that are shared by the same set
of rules. A rule itself is made up from a path of segments, although if there is no sharing that will
be a single segment. A bit-mask offset is assigned to each node in the segment. Also another
bit mask (the layering) is assigned to each segment in the rule's path. When there is at least
one input (data propagation) the node's bit is set to on. When each node has its bit set to on the
segment's bit is also set to on. Conversely if any node's bit is set to off, the segment is then also
set to off. If each segment in the rule's path is set to on, the rule is said to be linked in and a goal
is created to schedule the rule for evaluation. The same bit-mask technique is used to also track
dirty node, segments and rules; this allows for a rule already link in to be scheduled for evaluation
if it's considered dirty since it was last evaluated.

147

Hybrid Reasoning

This ensures that no rule will ever evaluate partial matches, if it's impossible for it to result in rule
instances because one of the joins has no data. This is possible in RETE and it will merrily churn
away producing martial match attempts for all nodes, even if the last join is empty.

While the incremental rule evaluation always starts from the root node, the dirty bit masks are

used to allow nodes and segments that are not dirty to be skipped.

Using the existence of at at least one items of data per node, is a fairly basic heuristic. Future
work would attempt to delay the linking even further; using techniques such as arc consistency to

determine whether or not matching will result in rule instance firings.

Where as RETE has just a singe unit of memory, the node memory, PHREAK has 3 levels of
memory. This allows for much more contextual understanding during evaluation of a Rule.

rHul»e Memory
r.'E‘.-.E-q:_;ment Memory
Node Node Node
Memory Memaory Memory
%
F.E‘.-.egment Memory
Node Node Node
Memory Memaory Memory
>
segment Memory
Node Node Node
Memory Memaory Memory

Figure 5.12. PHREAK 3 Layered memory system

Example 1 shows a single rule, with three patterns; A, B and C. It forms a single segment, with

bits 1, 2 and 4 for the nodes. The single segment has a bit offset of 1.

148

Hybrid Reasoning

R1=ABC

1

1

[
el

T N [T —

1

1

1

I
N S |

Figure 5.13. Examplel: Single rule, no sharing

Example 2 demonstrates what happens when another rule is added that shares the pattern A.
A is placed in its own segment, resulting in two segments per rule. Those two segments form a
path, for their respective rules. The first segment is shared by both paths. When A is linked the
segment becomes linked, it then iterates each path the segment is shared by, setting the bit 1 to
on. If B and C are later turned on, the second segment for path R1 is linked in; this causes bhit 2 to
be turned on for R1. With bit 1 and bit 2 set to on for R1, the rule is now linked and a goal created
to schedule the rule for later evaluation and firing.

When a rule is evaluated it is the segments that allow the results of matching to be shared. Each
segment has a staging memory to queue all insert, update and deletes for that segment. If R1 was
to evaluated it would process A and result in a set of tuples. The algorithm detects that there is a
segmentation split and will create peered tuples for each insert, update and delete in the set and
add them to R2's staging memory. Those tuples will be merged with any existing staged tuples
and wait for R2 to eventually be evaluated.

149

Hybrid Reasoning

R1=ABC
R2=ADE

1
[l
[

M) —————————

e m\] mmm————————————————

N —)

Figure 5.14. Example 2: Two rules, with sharing

Example 3 adds a third rule and demonstrates what happens when A and B are shared. Only
the bits for the segments are shown this time. Demonstrating that R4 has 3 segments, R3 has
3 segments and R1 has 2 segments. A and B are shared by R1, R3 and R4. While D is shared
by R3 and R4.

150

Hybrid Reasoning

R1=ABC
R3=ABDE
R4=ABDFG

e Y Y, T Y

Figure 5.15. Example 3: Three rules, with sharing

Sub-networks are formed when a Not, Exists or Accumulate node contain more than one element.
In Example 4 "B not(C)" forms the sub network, note that "not(C)" is a single element and does
not require a sub network and is merged inside of the Not node.

The sub network gets its own segment. R1 still has a path of two segments. The sub network
forms another "inner" path. When the sub network is linked in, it will link in the outer segment.

151

Hybrid Reasoning

Ri=Anot(Bnot(C))D
™
—

S I

T

Figure 5.16. Example 4 : Single rule, with sub-network and no sharing

Example 5 shows that the sub-network nodes can be shard by a rule that does not have a sub-
network. This results in the sub-network segment being split into two.

152

Hybrid Reasoning

v
.

Figure 5.17. Example 5: Two rules, one with a sub-network and sharing

4

(AL

Not nodes with constraints and accumulate nodes have special behaviour and can never unlink
a segment, and are always considered to have their bits on.

All rule evaluations are incremental, and will not waste work recomputing matches that it has
already produced.

The evaluation algorithm is stack based, instead of method recursion. Evaluation can be paused
and resumed at any time, via the use of a StackEntry to represent current node being evaluated.

When a rule evaluation reaches a sub-network a StackEntry is created for the outer path segment
and the sub-network segment. The sub-network segment is evaluated first, when the set reaches
the end of the sub-network path it is merged into a staging list for the outer node it feeds into. The
previous StackEntry is then resumed where it can process the results of the sub network. This
has the added benefit that all work is processed in a batch, before propagating to the child node;
which is much more efficient for accumulate nodes.

The same stack system can be used for efficient backward chaining. When a rule evaluation
reaches a query node it again pauses the current evaluation, by placing it on the stack. The query
is then evaluated which produces a result set, which is saved in a memory location for the resumed
StackEntry to pick up and propagate to the child node. If the query itself called other queries the

153

Hybrid Reasoning

process would repeat, with the current query being paused and a new evaluation setup for the
current query node.

One final point on performance. One single rule in general will not evaluate any faster with
PHREAK than it does with RETE. For a given rule and same data set, which using a root context
object to enable and disable matching, both attempt the same amount of matches and produce
the same number of rule instances, and take roughly the same time. Except for the use case with
subnetworks and accumulates.

PHREAK can however be considered more forgiving that RETE for poorly written rule bases and
with a more graceful degradation of performance as the number of rules and complexity increases.

RETE will also churn away producing partial machines for rules that do not have data in all the
joins; where as PHREAK will avoid this.

So it's not that PHREAK is faster than RETE, it just won't slow down as much as your system
grows :)

AgendaGroups did not help in RETE performance, as all rules where evaluated at all times, re-
gardless of the group. The same is true for salience. Which is why root context objects are often
used, to limit matching attempts. PHREAK only evaluates rules for the active AgendaGroup, and
within that group will attempt to avoid evaluation of rules (via salience) that do not result in rule
instance firings.

With PHREAK AgendaGroups and salience now become useful performance tools. The root con-
text objects are no longer needed and potentially counter productive to performance, as they force
the flushing and recreation of matches for rules.

154

Chapter 6. User Guide

6.1. The Basics

6.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a rule
engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the com-
plexity is layered and you can ease yourself in with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be
called like a function passing it some data and then receiving some results back. Some common
use cases for stateless sessions are, but not limited to:

 Validation
« Is this person eligible for a mortgage?
 Calculation
» Compute a mortgage premium.
» Routing and Filtering
* Filter incoming messages, such as emails, into folders.
* Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {
private String nang;
private int age;
private bool ean vali d;
/] getter and setter nethods here

Now that we have our data model we can write our first rule. We assume that the application uses
rules to reject invalid applications. As this is a simple validation use case we will add a single rule
to disqualify any applicant younger than 18.

package com conpany.licenserule "Is of valid age"when $a : Applicant(age < 18)then
$a.setValid(false);end

com conpany. licenserule "Is of valid

155

User Guide

age"
when $a : Applicant(age < 18

)
t hen $a. setValid(fal se

)i

To make the engine aware of data, so it can be processed against the rules, we have to insert
the data, much like with a database. When the Applicant instance is inserted into the engine it
is evaluated against the constraints of the rules, in this case just two constraints for one rule.
We say two because the type Applicant is the first object type constraint, and age < 18 is the
second field constraint. An object type constraint plus its zero or more field constraints is referred
to as a pattern. When an inserted instance satisfies both the object type constraint and all the field
constraints, it is said to be matched. The $a is a binding variable which permits us to reference the
matched object in the consequence. There its properties can be updated. The dollar character ('$")
is optional, but it helps to differentiate variable names from field names. The process of matching
patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

To use this rule it is necessary to put it a Drools file, just a plain text file with .drl extension , short
for "Drools Rule Language”. Let's call this file licenseApplication.drl, and store it in a Kie Project.
A Kie Project has the structure of a normal Maven project with an additional file (kmodule.xml)
defining the Ki eBases and Ki eSessi ons that can be created. This file has to be placed in the
resources/META-INF folder of the Maven project while all the other Drools artifacts, such as the
licenseApplication.drl containing the former rule, must be stored in the resources folder or in any
other subfolder under it.

Since meaningful defaults have been provided for all configuration aspects, the simplest
kmodule.xml file can contain just an empty kmodule tag like the following:

<?xm version="1.0" encodi ng="UTF-8"?>
<kmodul e xm ns="http://jboss.org/kie/6.0.0/knodul e"/ >

At this point it is possible to create a Ki eCont ai ner that reads the files to be built, from the class-
path.

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ki eServices. get Ki eCl asspat hCont ai ner () ;

The above code snhippet compiles all the DRL files found on the classpath and put the result of
this compilation, a Ki eMbdul e, in the Ki eCont ai ner . If there are no errors, we are now ready to
create our session from the Ki eCont ai ner and execute against some data:

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();
Applicant applicant = new Applicant("M John Smth", 16);
assert True(applicant.isValid());

ksessi on. execut e(applicant);

156

User Guide

assertFal se(applicant.isValid());

The preceding code executes the data against the rules. Since the applicant is under the age of
18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can
execute against any object implementing Iterable, such as a collection. Let's add another class
called Appl i cat i on, which has the date of the application, and we'll also move the boolean valid
field to the Appl i cati on class.

public class Applicant {
private String nang;
private int age;
/] getter and setter nethods here

public class Application {
private Date dateApplied;
private bool ean valid;
/'l getter and setter nethods here

We will also add another rule to validate that the application was made within a period of time.

package com conpany.licenserule "Is of valid age"when Applicant(age < 18) $a
Appl i cation() t hen $a.setValid(false);endrule "Application was made this year"when
$a : Application(dateApplied > "01-jan-2009") then $a. setValid(false);end

com conpany. licenserule "Is of valid
age"

when Applicant(age < 18

) $a : Application()

then $a. setValid(fal se

DE

endrul e "Application was nade this
year"
when $a : Application(dateApplied > "01-jan-2009")

then $a. setValid(fal se

DE

Unfortunately a Java element does not implement the Iterabl e interface, so we have to use
the JDK converter method Arrays. asLi st (...). The code shown below executes against an
iterable list, where all collection elements are inserted before any matched rules are fired.

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();
Applicant applicant = new Applicant("M John Smth", 16);

157

User Guide

Application application = new Application();

assert True(application.isValid());

ksessi on. execut e(Arrays. asList(new Object[] { application, applicant }));
assert Fal se(application.isValid());

The two execute methods execut e(Obj ect obj ect) and execute(lterabl e objects) are ac-
tually convenience methods for the interface Bat chExecut or's method execut e(Conmand com
mand) .

The Ki eCormands commands factory, obtainable from the Ki eSer vi ces like all other factories of
the KIE API, is used to create commands, so that the following is equivalent to execut e(I t er abl e

it):

ksessi on. execut e(ki eServi ces. get Commands() . new nsert El ement s(Arrays. asList(new Cbject[] { ap
plication, applicant }));

Batch Executor and Command Factory are particularly useful when working with multiple Com-
mands and with output identifiers for obtaining results.

Ki eConmmands ki eConmands = ki eServi ces. get Commands() ;

Li st <Command> cmds = new ArrayLi st <Conmand>();

cnds. add(ki eCommands. new nsert (new Person("M John Smith"), "mrSmith", true, null));
cnds. add(ki eCommands. new nsert (new Person("M John Doe"), "mrDoe", true, null));

Bat chExecuti onResul ts results = ksession. execute(ki eComrands. newBat chExecution(cnds));
assert Equal s(new Person("M John Smith"), results.getValue("nrSmith"));

ComandFact ory supports many other Commands that can be used in the Bat chExecut or like
St art Process, Query, and Set G obal .

6.1.2. Stateful Knowledge Session

Stateful Sessions are long lived and allow iterative changes over time. Some common use cases
for Stateful Sessions are, but not limited to:

* Monitoring

» Stock market monitoring and analysis for semi-automatic buying.
« Diagnostics

 Fault finding, medical diagnostics
* Logistics

» Parcel tracking and delivery provisioning

» Compliance

158

User Guide

* Validation of legality for market trades.

In contrast to a Stateless Session, the di spose() method must be called afterwards to ensure
there are no memory leaks, as the KieBase contains references to Stateful Knowledge Sessions
when they are created. Since Stateful Knowledge Session is the most commonly used session
type it is just named Ki eSessi on in the KIE API. Ki eSessi on also supports the Bat chExecut or
interface, like St at el essKi eSessi on, the only difference being that the Fi r eAl | Rul es command
is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four
classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,
we represent that with a single Fi r e instance.

public class Room {

private String nane

/] getter and setter nethods here
}
public class Sprinkler {

private Room room

private bool ean on;

/'l getter and setter nethods here
}
public class Fire {

private Room room

/] getter and setter nethods here
}

public class Alarm {

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data
were introduced. That example assumed that only a single instance of each object type was ever
inserted and thus only used literal constraints. However, a house has many rooms, so rules must
express relationships between objects, such as a sprinkler being in a certain room. This is best
done by using a binding variable as a constraint in a pattern. This "join" process results in what
is called cross products, which are covered in the next section.

When a fire occurs an instance of the Fi r e class is created, for that room, and inserted into the
session. The rule uses a hinding on the r oomfield of the Fi re object to constrain matching to
the sprinkler for that room, which is currently off. When this rule fires and the consequence is
executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkl er"when Fire($room : room $sprinkl er
Sprinkler(room == $room on == false)then nodi fy($sprinkler) { setOn(true) };
Systemout. println("Turn on the sprinkler for room" + $room getNanme());end

kl er"

when Fi re($room :

room $sprinkler : Sprinkler(room== $room on == false

)

t hen nmodi fy($sprinkler) { setOn(true)

159

User Guide

}s Systemout.printin("Turn on the sprinkler for room" + $room get Nane()

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule
we use the nodi fy statement, which acts as a sort of "with" statement. It may contain a series
of comma separated Java expressions, i.e., calls to setters of the object selected by the nodi fy
statement's control expression. This modifies the data, and makes the engine aware of those
changes so it can reason over them once more. This process is called inference, and it's essential
for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the
engine does not need to be aware of changes to data. Inference can also be turned off explicitly
by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?
How do we determine that a fire has been extinguished, i.e., that there isn't a Fi r e object any
more? Previously the constraints have been sentences according to Propositional Logic, where
the engine is constraining against individual instances. Drools also has support for First Order
Logic that allows you to look at sets of data. A pattern under the keyword not matches when
something does not exist. The rule given below turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "Wien the fire is gone turn off the sprinkler"when $room : Room() $spri nkl er
Sprinkl er(room== $room on == true) not Fire(room == $room)then nodi fy($sprinkler)
{ setOn(false) }; Systemout.printin("Turn off the sprinkler for room " +
$room get Nane()); end

kl er"

when $room : Room(

) $sprinkler : Sprinkler(room== $room on == true

) not Fire(room == $room

)
t hen modi fy($sprinkler) { setOn(false)
1 Systemout.printin("Turn off the sprinkler for room" + $room get Nane()

DE

While there is one sprinkler per room, there is just a single alarm for the building. An Al ar mobject
is created when a fire occurs, but only one Al ar mis needed for the entire building, no matter how
many fires occur. Previously not was introduced to match the absence of a fact; now we use its
complement exi st s which matches for one or more instances of some category.

rul e "Raise the al arm when we have one or nore fires"
when
exists Fire()
t hen
insert(new Alarn());
Systemout.println("Raise the alarn);
end

160

User Guide

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used
again.

rule "Cancel the alarmwhen all the fires have gone"when not Fire() $alarm: Alarn()then
delete($alarm); Systemout. println("Cancel the alarni);end

gone"

when not

Fire() $al arm :

Al ar ()

t hen del ete($al arm

); System out. println("Cancel the alarnt

)i

Finally there is a general health status message that is printed when the application first starts
and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"when not Al arn() not Sprinkler(on == true) then
Systemout.println("Everything is ok");end

ok" when not
Al arm() not Sprinkler(on == true

)
t hen Systemout.println("Everything is ok"

As we did in the Stateless Session example, the above rules should be placed in a single DRL
file and saved into the resouces folder of your Maven project or any of its subfolder. As before,
we can then obtain a Ki eSessi on from the Ki eCont ai ner. The only difference is that this time
we create a Stateful Session, whereas before we created a Stateless Session.

Ki eServi ces ki eServices = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eC asspat hCont ai ner () ;
Ki eSessi on ksessi on = kCont ai ner. newKi eSessi on();

With the session created it is now possible to iteratively work with it over time. Four Roomobjects
are created and inserted, as well as one Spri nkl er object for each room. At this point the engine
has done all of its matching, but no rules have fired yet. Calling ksessi on. fireAl | Rul es() allows
the matched rules to fire, but without a fire that will just produce the health message.

String[] names = new String[]{"kitchen", "bedroont, "office", "livingroon};
Map<Stri ng, Room> name2r oom = new HashMap<Stri ng, Roon®();
for(String name: nanes){

Room room = new Room(nane);

name2r oom put (nane, room);

ksession.insert(room);

Sprinkler sprinkler = new Sprinkler(room);

161

User Guide

ksession.insert(sprinkler);

ksession.fireA | Rul es();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned Fact Handl e.
A Fact Handle is an internal engine reference to the inserted instance and allows instances to be
retracted or modified at a later point in time. With the fires now in the engine, oncefi r eAl | Rul es()
is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(name2room get("kitchen'
Fire officeFire = new Fire(name2roomget("office")

)i

1

)
)

Fact Handl e kitchenFireHandl e = ksession.insert(kitchenFire);
Fact Handl e of ficeFireHandl e = ksession.insert(officeFire);

ksession.fireA | Rul es();

> Raise the alarm
> Turn on the sprinkler for roomkitchen
> Turn on the sprinkler for roomoffice

After a while the fires will be put out and the Fi r e instances are retracted. This results in the
sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed
again.

ksessi on. del ete(kitchenFireHandl e);
ksession. del ete(officeFireHandl e);

ksession.fireA | Rul es();

> Cancel the alarn> Turn off the sprinkler for room office> Turn off the sprinkler for room
ki tchen> Everything is ok

alarn> Turn off the sprinkler for room

office> Turn off the sprinkler for room

ki tchen> Everything is

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value
and power of a declarative rule system.

162

User Guide

6.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users often ask, "How do | call a rule?"
After the last section, you are now feeling like a rule expert and the answer to that is obvious, but
let's summarize the differences nonetheless.

public void hell owrl d(Person person) {
if (person.getNane().equal s("Chuck")) {
Systemout.println("Hello Chuck");

}

* Methods are called directly.
» Specific instances are passed.
e One call results in a single execution.

rule "Hell o Worl d" when Person(nanme == "Chuck")then Systemout.println("Hello Chuck");end
when Person(nane == " Chuck"

)
t hen Systemout.println("Hello Chuck"

DE

* Rules execute by matching against any data as long it is inserted into the engine.
« Rules can never be called directly.
» Specific instances cannot be passed to a rule.

« Depending on the matches, a rule may fire once or several times, or not at all.

6.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment
that the data from the fire alarm example were used in combination with the following rule where
there are no field constraints:

rule "Show Sprinklers" when $room : Room() $sprinkler : Sprinkler()then
Systemout.printin("room" + $room getName() + " sprinkler:" +
$sprinkl er. get Roon() . get Nane()); end

when $room :

Room() $sprinkler :

Sprinkler()

t hen Systemout.println("room" + $room get Nane()

+ " sprinkler:" + $sprinkler.get Roon(). get Nare()

Dk

163

User Guide

In SQL terms this would be like doing sel ect * from Room Sprinkl er and every row in the
Room table would be joined with every row in the Sprinkler table resulting in the following output:

roomof fice sprinkler:office

room of fice sprinkler:kitchen
roomof fice sprinkler:livingroom
room of fi ce sprinkler:bedroom
room kit chen sprinkler:office
room ki t chen sprinkl er:kitchen
room ki tchen sprinkler:Iivingroom
room ki t chen spri nkl er: bedroom
room | ivingroom sprinkler:office
room | i vi ngroom sprinkl er: ki tchen
room | i vi ngroom sprinkl er:1ivingroom
room | i vi ngroom spri nkl er: bedr oom
room bedr oom sprinkl er: of fice
room bedr oom spri nkl er: ki tchen
room bedroom sprinkler:1ivingroom
room bedroom spri nkl er: bedr oom

These cross products can obviously become huge, and they may very well contain spurious data.
The size of cross products is often the source of performance problems for new rule authors. From
this it can be seen that it's always desirable to constrain the cross products, which is done with
the variable constraint.

rule
when

$room : Roon()

$sprinkler : Sprinkler(room== $room)
then

Systemout.println("room" + $room getName() +

" sprinkler:" + $sprinkler.getRoon().getName());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be sel ect * from Room Sprinkler where Room ==
Spri nkl er.room

roomoffice sprinkler:office

room ki t chen sprinkl er:kitchen

room | i vi ngroom sprinkl er:1ivingroom
room bedr oom spri nkl er: bedr oom

164

User Guide

6.2. Execution Control

6.2.1. Agenda

The Agenda is a Rete feature. It maintains set of rules that are able to execute, its job is to schedule
that execution in a deterministic order.

During actions on the Rul eRunt i e, rules may become fully matched and eligible for execution;
a single Rule Runtime Action can result in multiple eligible rules. When a rule is fully matched a
Rule Match is created, referencing the rule and the matched facts, and placed onto the Agenda.
The Agenda controls the execution order of these Matches using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Rule Runtime Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fi reAl | Rul es() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Rule Runtime Actions.

Determine
possible rules to
fire

" Agenda Evaluation

. Working Memory Action

L
. Rule
Fire Rule | wto Fire

Mo Rule
Found

Figure 6.1. Two Phase Execution

165

User Guide

The process repeats until the agenda is clear, in which case control returns to the calling applica-
tion. When Rule Runtime Actions are taking place, no rules are being fired.

6.2.2. Rule Matches and Conflict Sets.

6.2.2.1. Cashflow Example

So far the data and the matching process has been simple and small. To mix things up a bit a
new example will be explored that handles cashflow calculations over date periods. The state of
the engine will be illustratively shown at key stages to help get a better understanding of what
is actually going on under the hood. Three classes will be used, as shown below. This will help
us grow our understanding of pattern matching and joins further. We will then use this to illustate
different techniques for execution control.

public class CashFl ow {
private Date date;
private doubl e anmount;
private int type;
| ong account No;
/] getter and setter nethods here

}

public class Account {
private |ong account No;
private doubl e bal ance;
/'l getter and setter nethods here

}

public AccountPeriod {
private Date start;
private Date end,
/] getter and setter nethods here

By now you already know how to create KieBases and how to instantiate facts to populate the
Ki eSessi on, so tables will be used to show the state of the inserted data, as it makes things
clearer for illustration purposes. The tables below show that a single fact was inserted for the
Account . Also inserted are a series of debits and credits as CashFl ow objects for that account,
extending over two quarters.

166

User Guide

CashFlow Account
date amount type accountMo accountMo balance
12-Jan-07 100|CREDIT 1 1
2-Feb-07 200DEBIT 1
18-May-07 50|CREDIT 1
9-Mar-07 T5|CREDIT 1
Figure 6.2. CashFlows and Account
Two rules can be used to determine the debit and credit for that quarter and update the Account
balance. The two rules below constrain the cashflows for an account for a given time period. Notice
the "&&" which use short cut syntax to avoid repeating the field name twice.
rule "increase balance for credits"when ap : rule "decrease bal ance for deb
Account Period() acc : Account($accountNo : its" when ap : AccountPeriod() acc :
accountNo) CashFlow type == CREDIT, Account ($accountNo : account No)
account No == $account No, CashFl ow(type == DEBIT,
date >= ap.start && <= ap.end, account No == $account No, date >=
$anount amount)then acc.balance += ap.start && <= ap. end, $anount
$anount ; end anmount) then acc. bal ance -= $anount; end
debi ts"
credits"when ap when ap :
Account Period() acc : Account($account No Account Peri od() acc : Account($accountNo : account No
accountNo) CashFlow type) CashFl ow(type ==
== CREDI T, account No DEBI T, account No
== $account No, date >= ap.start & == $account No, date >= ap.start && <=
<= ap. end, $anount ap. end, $anount anount
anmount)
)then acc. bal ance t hen acc. bal ance -=

+=

Earlier we showed how rules would equate to SQL, which can often help people with an SQL
background to understand rules. The two rules above can be represented with two views and a

trigger for each view, as below:

Table 6.1.
select * from Account acc,
Cashfl ow cf, Account Peri od ap
wher e acc. account == cf.account No and
cf.type == CREDIT and cf.date >=
ap.start and cf.date <= ap.end
acc, Cashf | ow
cf, Account Peri od ap
wher e acc. account No == cf.account No
and cf.type == CREDI T
and cf.date >= ap.start
and cf.date <=

select * from Account acc,
Cashfl ow cf, Account Peri od
ap where acc.account No == cf.account No and

cf.type == DEBIT and cf.date >=

ap.start and cf.date <= ap.end

acc, Cashf | ow
cf, Account Peri od

ap where acc.account No == cf. account No

and cf.type == DEBIT
and cf.date >= ap.start

and cf.date <=

167

User Guide

trigger : acc. bal ance += cf. anmount trigger : acc.bal ance -= cf.anmount

If the Account Per i od is set to the first quarter we constrain the rule "increase balance for credits"
to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 6.3. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched
during the insertion stage and, as you discovered in the previous chapter, does not fire straight
away, butonly afterfi reAl | Rul es() is called. Meanwhile, the rule plus its matched data is placed
on the Agenda and referred to as an Rule Match or Rule Instance. The Agenda is a table of Rule
Matches that are able to fire and have their consequences executed, as soon as fireAllRules()
is called. Rule Matches on the Agenda are referred to as a conflict set and their execution is
determine by a conflict resolution strategy. Notice that the order of execution so far is considered
arbitrary.

Agenda
1 Increase balance
2 decrease balance arbitrary
3 Increase balance

Figure 6.4. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Account
accountMo balance
1 -25

Figure 6.5. CashFlows and Account

If the Account Peri od is updated to the second quarter, we have just a single matched row of
data, and thus just a single Rule Match on the Agenda.

168

AccountingP eriod
start end
01-Jan-07 31-M ar-07
CashFlow CashFlow
date amount type date amount type
12-Jan-07 TO0[CREDIT 2-Feb-07 200|DEBIT
O-Mar-07 THICREDIT

User Guide

The firing of that Activation results in a balance of 25.

AccountingPeriod
start end
01-Apr-07 20-Jun-07
CashFlow
date amount type
18-May-07 ROICREDIT

Figure 6.6. CashFlows and Account

accountMo balance
1 25

Figure 6.7. CashFlows and Account

6.2.2.2. Conflict Resolution

What if you don't want the order of rule execution to be arbitrary? When there is one or more Rule
Match on the Agenda they are said to be in conflict, and a conflict resolution strategy is used to
determine the order of execution. The Drools strategy is very simple and based around a salience
value, which assigns a priority to a rule. Each rule has a default value of 0, the higher the value
the higher the priority.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author
the rules without worrying about a "flow". However when a flow is needed a number of possibilities
exist beyond salience: agenda groups, rule flow groups, activation groups and control/semaphore
facts.

As of Drools 6.0 rule definition order in the source file is used to set priority after salience.

6.2.2.3. Salience

To illustrate Salience we add a rule to print the account balance, where we want this rule to be
executed after all the debits and credits have been applied for all accounts. We achieve this by
assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 6.2.
rule "Print balance for AccountPeriod" sal i ence -50 when ap : Account Peri od()
acc : Account() t hen Systemout. println(acc.accountNo + "
" + acc. bal ance); end

169

User Guide

Account Peri od"
sal i ence -50

when
ap : Account Peri od() acc : Account ()
t hen Systemout.println(acc.accountNo + " : " + acc. bal ance

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, to execute afterwards.

Agenda
1 increase balance
2 decrease balance arbitrary
3 Increase balance
4 print balance

Figure 6.8. CashFlows and Account

6.2.2.4. Agenda Groups

Agenda groups allow you to place rules into groups, and to place those groups onto a stack. The
stack has push/pop bevaviour. Calling "setFocus" places the group onto the stack:

ksessi on. get Agenda() . get AgendaG oup("Group A").setFocus();

The agenda always evaluates the top of the stack. When all the rules have fired for a group, it is
poped from the stack and the next group is evaluated.

Table 6.3.
rule "increase balance for credits" agenda- rule "Print bal ance for AccountPeri
group "cal cul ati on"when ap : AccountPeriod() od" agenda-group "report"when ap :
acc : Account($accountNo : accountNo) Account Period() acc : Account()then
CashFl ow(type == CREDIT, System out. println(acc.accountNo +
account No == $account No, date >= " : " + acc. bal ance); end
ap.start && <= ap. end, $anmount : Account Peri od"
amount)then acc. bal ance += $anount;end
credits" agenda- agenda- group "report"when
group ap : Account Peri od()
"cal cul ati on"when ap acc
Account Period() acc : Account($account No : Account ()t hen
accountNo) CashFlow type System out. println(acc.accountNo +
== CREDI T, account No + acc. bal ance
== $account No, date >= ap.start &);
<= ap. end, $anount
anount

)then acc. bal ance

170

User Guide

First set the focus to the "report" group and then by placing the focus on "calculation” we ensure
that group is evaluated first.

Agenda agenda = ksessi on. get Agenda();

agenda. get AgendaG oup("report").setFocus();
agenda. get AgendaG oup("cal cul ation").setFocus();
ksession.fireAl |l Rul es();

6.2.2.5. Rule Flow

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively
specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools
plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed
before the reporting rules.

= *banking.tf 2

[:i Select

F=1
L Marquee

— _anneckion Creation

|~ Components *

i} Skart

[End calculation
[RuleFlowaroup

=2 split

=+ Join

(7) Milestone
ez SubFlow
Action

& End

The use of the ruleflow-group attribute in a rule is shown below.

Table 6.4.
rule "increase bal ance for credits"” rule "Print balance for AccountPeri
rul ef| ow-group "cal cul ati on"when ap : od" ruleflowgroup "report”"when ap :

171

User Guide

Account Period() acc : Account($accountNo : Account Period() acc : Account()then
accountNo) CashFlow type == CREDIT, System out. println(acc.accountNo +
account No == $account No, " : " + acc. bal ance); end
date >= ap.start && <= ap.end, Account Peri od"
$anmpunt : anmpbunt)then acc.balance +=
$anount ; end rul ef | owgroup "report"when
credits" ruleflow ap : Account Peri od()
group acc
“cal cul ati on"when ap : Account ()then
Account Period() acc : Account($account No Systemout.println(acc.accountNo +
accountNo) CashFlow type + acc. bal ance
== CREDI T, account No)
== $account No, date >= ap.start &
<= ap. end, $anount
anount

)then acc. bal ance
+=

6.2.3. Declarative Agenda

Warning

Declarative Agenda is experimental, and all aspects are highly likely to change in
the future. @Eager and @Direct are temporary annotations to control the behav-
iour of rules, which will also change as Declarative Agenda evolves. Annotations
instead of attributes where chosen, to reflect their experimental nature.

The declarative agenda allows to use rules to control which other rules can fire and when. While
this will add a lot more overhead than the simple use of salience, the advantage is it is declarative
and thus more readable and maintainable and should allow more use cases to be achieved in
a simpler fashion.

This feature is off by default and must be explicitly enabled, that is because it is considered high-
ly experimental for the moment and will be subject to change, but can be activated on a given
KieBase by adding the declarativeAgenda='enabled' attribute in the corresponding kbase tag of
the kmodule.xml file as in the following example.

Example 6.1. Enabling the Declarative Agenda

<kmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns="http://jboss. org/ ki e/6.0.0/ knodul e">
<kbase name="Decl ar ati veKBase" decl arati veAgenda="enabl ed" >
<ksessi on name="KSessi on">
</ kbase>
</ knmodul e>

The basic idea is:

172

User Guide

« Allrule's Matches are inserted into WorkingMemory as facts. So you can now do pattern match-
ing against a Match. The rule's metadata and declarations are available as fields on the Match
object.

* You can use the kcontext.blockMatch(Match match) for the current rule to block the selected
match. Only when that rule becomes false will the match be eligible for firing. If it is already
eligible for firing and is later blocked, it will be removed from the agenda until it is unblocked.

« A match may have multiple blockers and a count is kept. All blockers must became false for the
counter to reach zero to enable the Match to be eligible for firing.

 kcontext.unblockAllMatches(Match match) is an over-ride rule that will remove all blockers
regardless

« An activation may also be cancelled, so it never fires with cancelMatch

< An unblocked Match is added to the Agenda and obeys normal salience, agenda groups, rule-
flow groups etc.

* The @Direct annotations allows a rule to fire as soon as it's matched, this is to be used for rules
that block/unblock matches, it is not desirable for these rules to have side effects that impact
else where.

Example 6.2. New RuleContext methods

voi d bl ockMat ch(Mat ch nat ch);
voi d unbl ockAl | Mat ches(Mat ch mat ch);
voi d cancel Mat ch(Match natch);

Here is a basic example that will block all matches from rules that have metadata
@department('sales'). They will stay blocked until the blockerAllSalesRules rule becomes false,
i.e. "go2" is retracted.

Example 6.3. Block rules based on rule metadata

rule rulel @tager @lepartnent('sales') when $s : String(this == 'gol')then
list.add(kcontext.rule.name + ':' + $s);endrule rule2 @ager @lepartnent('sales') when
$s : String(this == 'gol')then list.add(kcontext.rule.name + ':' + $s);endrule

bl ocker Al | Sal esRul es @i rect @Eager when $s . String(this =="'go2') $i : Match(departnment
== 'sales')then list.add($i.rule.name + ':' + $s); kcont ext . bl ockMatch($i);end

when $s @ String(this == 'gol’

)

t hen list.add(kcontext.rule.nane + ':' + $s

)

endrul e rul e2 @ager @lepartnent (' sales')
when $s : String(this == 'gol'

)

t hen list.add(kcontext.rule.nane + ':' + $s

)i

173

User Guide

endrul e bl ocker Al |l Sal esRul es @i rect @tager

when $s @ String(this == 'go2'

) $i : Match(department == 'sales’

)

t hen list.add($i.rule.name + ':' + $s
) kcont ext . bl ockMat ch($i

DE

Warning

Further than annotate the blocking rule with @Direct, it is also necessary to anno-
tate all the rules that could be potentially blocked by it with @Eager. This is be-
cause, since the Match has to be evaluated by the pattern matching of the blocking
rule, the potentially blocked ones cannot be evaluated lazily, otherwise won't be
any Match to be evaluated.

This example shows how you can use active property to count the number of active or inactive
(already fired) matches.

Example 6.4. Count the number of active/inactive Matches

rule rulel @tager @epartnent('sales') when $s : String(this == 'gol')then
list.add(kcontext.rule.nane + ':' + $s);endrul e rul e2 @ager @lepartnent('sales') when $s :

String(this == "gol')then list.add(kcontext.rule.name + ':' + $s);endrul e rul e3 @tager
@epartment (' sal es') when $s : String(this == 'gol')then I'ist.add(kcontext.rule.nanme
+ ':' + $s);endrul e countActivatel nActive @irect @tager when $s : String(this == 'go2')
$active : Number(this == 1) fromaccunulate($a : Match(department == 'sales', active ==
true), count($a)) $inActive : Nunmber(this ==2) from accumul ate($a : Match(depart nent
== 'sales', active == false), count($a))then kcontext.halt();end
when $s : String(this == 'gol'
)
t hen list.add(kcontext.rule.nane + ':' + $s
DE
endrul e rul e2 @ager @lepartnment (' sales')
when $s @ String(this == 'gol’
)
t hen list.add(kcontext.rule.name + ':' + $s
DE
endrul e rul e3 @ager @lepartnent (' sales')
when $s @ String(this == 'gol’
)
t hen list.add(kcontext.rule.nane + ':' + $s
)
endrul e count Acti vatel nActive @irect @tager
when $s : String(this == 'go2'
) $active : Nunmber(this == 1) from accunulate($a : Match(departnent == 'sales',
active == true), count($a)
) $inActive : Nunber(this == 2) from accunmulate($a : Mtch(departnment == 'sales',
active == false), count($a)
)
then kcont ext . hal t (

174

User Guide

);end

6.3. Inference

6.3.1. Bus Pass Example

Inference has a bad name these days, as something not relevant to business use cases and
just too complicated to be useful. It is true that contrived and complicated examples occur with
inference, but that should not detract from the fact that simple and useful ones exist too. But more
than this, correct use of inference can crate more agile and less error prone business rules, which
are easier to maintain.

So what is inference? Something is inferred when we gain knowledge of something from using
previous knowledge. For example, given a Person fact with an age field and a rule that provides
age policy control, we can infer whether a Person is an adult or a child and act on this.

rule “Infer Adult"when $p : Person(age >= 18)then insert(new IsAdult($p))end
Adul t"
when $p : Person(age >= 18

)
then insert(new IsAdult($p)

)

Due to the preceding rule, every Person who is 18 or over will have an instance of IsAdult inserted
for them. This fact is special in that it is known as a relation. We can use this inferred relation
in any rule:

$p : Person()IsAdult(person == $p)
son() I sAdul t(person == $p

So now we know what inference is, and have a basic example, how does this facilitate good rule
design and maintenance?

Let's take a government department that are responsible for issuing ID cards when children be-
come adults, henceforth referred to as ID department. They might have a decision table that in-
cludes logic like this, which says when an adult living in London is 18 or over, issue the card:

175

User Guide

able] ~|g 8
CONDITION CONDITION SCTIOMN
p : Person
bocation =02 == 51 EsueldCard! 51)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London 18

However the ID department does not set the policy on who an adult is. That's done at a central
government level. If the central government were to change that age to 21, this would initiate a
change management process. Someone would have to liaise with the ID department and make
sure their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an
agile environment, and change becomes costly and error prone. Also the card department is
managing more information than it needs to be aware of with its "monolithic" approach to rules
management which is "leaking" information better placed elsewhere. By this | mean that it doesn't
care what explicit "age >= 18" information determines whether someone is an adult, only that they
are an adult.

In contrast to this, let's pursue an approach where we split (de-couple) the authoring responsibil-
ities, so that both the central government and the ID department maintain their own rules.

It's the central government's job to determine who is an adult. If they change the law they just
update their central repository with the new rules, which others use:

CONDITION ACTION
p i Person
age == 51 insert] 51)
Adult Age Policy Add Adult Relation
Infer Adult i
new [sAdult(p)

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the
seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.
Now if anyone uses the above rules, they no longer need to be aware of explicit information that
determines whether someone is an adult or not. They can just use the inferred fact:

176

User Guide

aD|e 1 =gt
CONDITION CONDITION ACTION
p : Person Isfdult
location person == $1 issweldCand] %1]
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London p 1]

While the example is very minimal and trivial it illustrates some important points. We started with a
monolithic and leaky approach to our knowledge engineering. We created a single decision table
that had all possible information in it and that leaks information from central government that the
ID department did not care about and did not want to manage.

We first de-coupled the knowledge process so each department was responsible for only what it
needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The
use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=
18"

So a general rule of thumb when doing your knowledge engineering is:

* Bad
» Monolithic
* Leaky
» Good
» De-couple knowledge responsibilities
* Encapsulate knowledge

» Provide semantic abstractions for those encapsulations
6.4. Truth Maintenance with Logical Objects

6.4.1. Overview

After regular inserts you have to retract facts explicitly. With logical assertions, the fact that was
asserted will be automatically retracted when the conditions that asserted it in the first place are
no longer true. Actually, it's even cleverer then that, because it will be retracted only if there isn't
any single condition that supports the logical assertion.

Normal insertions are said to be stated, i.e., just like the intuitive meaning of "stating a fact" implies.
Using a HashMap and a counter, we track how many times a particular equality is stated; this
means we count how many different instances are equal.

177

User Guide

When we logically insert an object during a RHS execution we are said to justify it, and it is con-
sidered to be justified by the firing rule. For each logical insertion there can only be one equal
object, and each subsequent equal logical insertion increases the justification counter for this log-
ical assertion. A justification is removed by the LHS of the creating rule becoming untrue, and the
counter is decreased accordingly. As soon as we have no more justifications the logical object
is automatically retracted.

If we try to logically insert an object when there is an equal stated object, this will fail and return
null. If we state an object that has an existing equal object that is justified we override the Fact;
how this override works depends on the configuration setting Wv BEHAVI OR_PRESERVE. When the
property is set to discard we use the existing handle and replace the existing instance with the
new Object, which is the default behavior; otherwise we override it to stated but we create an
new Fact Handl e.

This can be confusing on a first read, so hopefully the flow charts below help. When it says that it
returns a new Fact Handl e, this also indicates the Obj ect was propagated through the network.

178

User Guide

Is there an
existing Equal
Object?

Return new
FactHandle

yes

Return new

FactHandle

JUSTIFIED

Crerride JUSTIFIED,
and set to STATED,
set existing handle to
fhe new Ohject,

Discard Logical
Assertion?

no

!

Cwemide JUSTIFIED
and set to STATED,
remove justifications
and return existing
FactHandle

Figure 6.9. Stated Insertion

yes

Is the Ofject
STATED or

JUSTIFED?

Return existing

STATED FactHandle.

JUSTIFIED

Override JUSTIFIED
and set to STATED,
resnove justifications
and retum existing
FactHandle

179

User Guide

Add first
justification and

Is there an
existing Equal
Object?

[oes the Object
already exist?

retunn mew
FactHandle

yES yes

Can't Justify a s tha Object g?'ltféﬁgcta
STATED faet, STATED or STATED e
return null. JUSTIFE? JUSTIFED? FactHandle,

JUSTIFIED JUSTIFIED

Add additional
justification and

Add first
justification and

retuUrm e
FactHandle

return existing
FactHandle

Figure 6.10. Logical Insertion

6.4.1.1. Bus Pass Example With Inference and TMS

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,
either a child or adult pass.

rule "lssue Child Bus Pass" when $p : Person(age < 16)then insert(new

Chi | dBusPass($p));end rule "lIssue Adult Bus Pass" when $p : Person(age >= 16)then
i nsert (new Adul t BusPass($p));end

when $p : Person(age < 16

)

t hen insert (new Chil dBusPass($p)

DE

end

rule "Issue Adult Bus Pass"

when $p : Person(age >= 16

)

t hen i nsert (new Adul t BusPass($p)

Dk

180

User Guide

As before the above example is considered monolithic, leaky and providing poor separation of
concerns.

As before we can provide a more robust application with a separation of concerns using inference.
Notice this time we don't just insert the inferred object, we use "insertLogical":

rule "Infer Child" when $p : Person(age < 16)then i nsertLogical (newlsChild($p))endrule
"I nfer Adult" when $p : Person(age >= 16)then i nsertLogical (new IsAdult($p))end
when $p : Person(age < 16

)
t hen insertLogical (new IsChild($p)

)

endrule "Infer Adult"
when $p : Person(age >= 16

)
t hen insertLogical (new I sAdult($p)

)

A "insertLogical" is part of the Drools Truth Maintenance System (TMS). When a fact is logically
inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule
becomes false the fact is automatically retracted. This works particularly well as the two rules are
mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once
the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

Returning to the code to issue bus passes, these two rules can + logically insert the ChildBusPass
and AdultBusPass facts, as the TMS + supports chaining of logical insertions for a cascading set
of retracts.

rule "lssue Child Bus Pass" when $p : Person() IsChild(person == $p)then
insertLogical (new Chil dBusPass($p));end rule "lssue Adult Bus Pass" when $p : Person(age
>= 16) I sAdul t (person =$p)then i nsert Logi cal (new Adul t BusPass($p));end

when $p @ Person(

) I sChil d(person == $p

)

t hen i nsertLogi cal (new Chil dBusPass($p)

NE

end

rule "lIssue Adult Bus Pass"
when $p : Person(age >= 16
) I sAdul t (person =$p
)

t hen i nsertLogi cal (new Adul t BusPass($p)

)i

Now when a person changes from being 15 to 16, not only is the IsChild fact automatically re-
tracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the 'not'
conditional element to handle natifications, in this situation, a request for the returning of the pass.
So when the TMS automatically retracts the ChildBusPass object, this rule triggers and sends a
request to the person:

181

User Guide

rule "Return Chil dBusPass Request "when $p : Person() not (Chil dBusPass(person
== $p))then request Chi | dBusPass($p); end

Request "when $p :

Person() not (Chil dBusPass(person == $p

))then request Chi | dBusPass(

6.4.1.2. Important note: Equality for Java objects

It is important to note that for Truth Maintenance (and logical assertions) to work at all, your
Fact objects (which may be JavaBeans) must override equals and hashCode methods (from
java.lang.Object) correctly. As the truth maintenance system needs to know when two different
physical objects are equal in value, both equals and hashCode must be overridden correctly, as
per the Java standard.

Two objects are equal if and only if their equals methods return true for each other and if their
hashCode methods return the same values. See the Java API for more details (but do keep in
mind you MUST override both equals and hashCode).

TMS behaviour is not affected by theruntime configuration of Identity vs Equality, TMS is always
equality.

6.5. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact” (ref. Wikipedia) way of representing conditional logic,
and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),
and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,
OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table
editors will be included in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very
briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered
into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can
be taken advantage of.

6.5.1. When to Use Decision Tables

Consider decision tables as a course of action if rules exist that can be expressed as rule templates
and data: each row of a decision table provides data that is combined with a template to generate
arule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy
to continue this way, you can also manage your business rules this way. This also assumes you are
happy to manage packages of rules in . x| s or . csv files. Decision tables are not recommended

182

User Guide

for rules that do not follow a set of templates, or where there are a small number of rules (or if there
is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there
can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

6.5.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

@ Microsoft Excel - TeamAllocationExample_TYPICAL_EXAMPLE.xls g@
@J He Edit View Insert Format Tools Data Window Help Typeaquestonforhelp ~ - & x
L - - = = - 2 .0 'EE - - :[v A -
_d_Tahoma 7 |I-H|?_§|$ % 3 B E| i Dy A
B17 - # Catastrophic Claim

] &
1 B | C | D | E

£

Type of New Claim Is case catastrophic Allocation code Claim 1
16
1 7 Catastrophic Claim v
MNew Claim with previous Accident num 2
18
Previous Open claim 1 P

19

20 Dependency Claim &

2 ‘] Dependency Claim |

22 Interstate Claim A

23 Interstate Claim D

24 Interstate Claim N

25 Interstate Claim 5 _v L
M 4 » »\Tables Lists / ¢ i
Ready NUM

Figure 6.11. Using Excel to edit a decision table

J I L
rer Allocate to Team Stop processing Log reason
Team FHed _ . .
Stop processing The claim was catastrophic

Figure 6.12. Multiple actions for a rule row

183

User Guide

i TeamallocationExample_TYPICAL_EXAMPLE - OpenOffice. org Calc =JOEd
File Edit View Insert Format Tools Data Window Help x
Brelas ||| BSRIVE L RE ¢ S&HN S HoBaEQ | @ |
i bd |Tahoma >l |7 ¥»|B|J U ==== LG wles0-9-A-
B17 v| fu = = |Catastrophic Claim
:'| ~
z J
112 B [c D E F G
o 8
Ell
16 Type of New Claim 1s case catastrophic Allocation code Claim Type | Insurance Class |Date of accident is after Da
17 Catastrophic Claim v
18 Mew Claim with previous Accident 2
num
19 Previous Open claim 1 P
20 Dependency Claim 8
21 Dependency Claim 9
22 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N
25 Interstate Claim s
26 Interstate Claim T ™
\ Tables { Lists / IE |
Sheet1/2 PageStyle_Tables 100% STD Sum=0

Figure 6.13. Using OpenOffice.org

In the above examples, the technical aspects of the decision table have been collapsed away
(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,
E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning
is indicated by the headers in Row 16. Column B is just a description. It is customary to use color
to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not
necessarily the case. Ideally, rules are authored without regard for the order of
rows, simply because this makes maintenance easier, as rows will not need to be
shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules
that match may fire. (Some people are confused by this. It is possible to clear the agenda when a
rule fires and simulate a very simple decision table where only the first match effects an action.)
Also note that you can have multiple tables on one spreadsheet. This way, rules can be grouped
where they share common templates, yet at the end of the day they are all combined into one rule
package. Decision tables are essentially a tool to generate DRL rules automatically.

184

User Guide

1 I H [3 I [I 5 &

Module
RuleSet Control Cajas[1]

1.validarAperturaCaja (Caja, Registro Estado Sucursal, Transacdon)

Prioridades de

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas las Reghs Nombres de las Reglas Descripciones
1
Esta Regla tiene por Mision Validar que la sucursal de k
se encuentre abierta
ValidarAperturaCajasucursal
1 2000 P] Trabaja sobre la Caja que se intenta abrir, la Sucurs:

Abiert: .
era corresponde a esa caja y la Transaccion de Ca;

L] apertura
Esta Regla tiene por Mision Validar que en la sucursal

caja se encuentre abierta para la misma fecha de ape

5 2000 ValdarAperturaCajaMismaFe |de la caja.

cha Trabaja sobre la Caja que se intenta abrir, la Sucursz
corresponde a esa caja y la Transaccion de Ca
i apertura
6
7
[l 2.validarCierreCajasSucursal(Registro Estado Sucursal, TransaccionCaja)
ID_Caso de Uso| Caso de Uso Identificadores de las Reglas Pns;u:::;fsde Nombres de las Reglas Descripciones
2
Esta Regla tiene por Misidn Valdar que al moment
C_PRSC_503 efectuarse el Clerre Conta?le de una sucursal de FOI
C_PRSC_504 1 1000 ValidarCierreCajassucursal todas las Cajas de esta (iftima se encuentren en E
C_PRSC 513 Cerrado, es decir la Fecha de Cierre de Caja debe ser

a la Fecha de cierre de la entidad Registro_Cierre_Suc

3.validarTransaccionCaja(Caja, Transacdon_Caja)

RuleTable[3] ValidarTransaccdonCaja(CajaVO caja, MovimientoCajaVO movimientoCaja)
ID_Casode Uso Caso de Uso Identificador Nombre

Figure 6.14. A real world example using multiple tables for grouping like
rules

6.5.3. How Decision Tables Work

The key point to keep in mind is that in a decision table each row is a rule, and each column in
that row is either a condition or action for that rule.

3 T
11z B © D [E | F | G
Type of New Claim Is case catastrophic Allocation code Insurance Class Date of accident is after
16
Catastrophic Claim
17 ¥
New Claim with previous Accident num z
I
Each row results in a rule
. L
7
o
21 Dependency Claim
22 Interstate Claim
23 Interstate Claim
24 Interstate Claim
95 Interstate Claim i 4
M 4 » »]\Tables Lsts / J 2

Figure 6.15. Rows and columns

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the
starting row and column). Other keywords are also used to define other package level attributes
(covered later). It is important to keep the keywords in one column. By convention the second
column ("B") is used for this, but it can be any column (convention is to leave a margin on the
left for notes). In the following diagram, C is actually the column where it starts. Everything to the
left of this is ignored.

185

User Guide

If we expand the hidden sections, it starts to make more sense how it works; note the keywords
in column C.

IntegrationExampleTest — OpenOffice.org Calc

File Edit View Insert Format Tools Data Window Help X
- B »»
B-pliaEEZ TY KB 2 D5 F 2 @ |
BH [Tahoma |v [7 |v &R RrE EEEE T e O R = I =):
G17 |~| o 2 = |
Al2| B | c | D E [=
7
]
ﬂ 9 RulaSet Some business rules
10 mp ort org.drools.decisiontable. Cheese, org.drools. decll |
. | S s !
2
= [13 RueTable Cheesefans | | |
14 CONDITION (CONDITICN ACTION]
15 Farson Cheese list
16
(descriptions) ane type add Fparam)
17 Case Persons age Cheese type Log |
18 O1d guy 42 stilton 0ld man stilton
19 Young guy
21 cheddar Young man cheddar
20
_'_I 21 hariahle; java.util List list]
22 <1
E] |
Tables { Lists 1] 4] [[+]
Sheet 1/ 2 PageStyle_Tables 100% STD Sum=0 Average=

Figure 6.16. Expanded for rule templates

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name
to be used in the rule package that will encompass all the rules. This name is optional, using a
default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later. The
RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule
templates. After the RuleTable keyword there is a name, used to prefix the names of the generated
rules. The sheet name and row numbers are appended to guarantee unique rule names.

Warning

The RuleTable name combined with the sheet name must be unique across all
spreadsheet files in the same KieBase. If that's not the case, some rules might
have the same name and only 1 of them will be applied. To show such ignored
rules, raise the severity of such rule name conflicts.

186

User Guide

The column of RuleTable indicates the column in which the rules start; columns to the left are
ignored.

@ Note
In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and AC-
TION indicate that the data in the columns below are for either the LHS or the RHS parts of a rule.
There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option
is not in use, the row must be left blank; however this option is usually found to be quite useful.
When using this row, the values in the cells below (row 16) become constraints on that object type.
In the above case, it generates Per son(age=="42") and Cheese(type=="stilton"), where 42
and "stilton" come from row 18. In the above example, the "=="is implicit; if just a field name is
given the translator assumes that it is to generate an exact match.

@ Note
An ObjectType declaration can span columns (via merged cells), meaning that all
columns below the merged range are to be combined into one set of constraints
within a single pattern matching a single fact at a time, as opposed to non-merged
cells containing the same ObjectType, but resulting in different patterns, potentially
matching different or identical facts.

Row 16 contains the rule templates themselves. They can use the "$param" placeholder to indi-
cate where data from the cells below should be interpolated. (For multiple insertions, use "$1",
"$2", etc., indicating parameters from a comma-separated list in a cell below.) Row 17 is ignored;
it may contain textual descriptions of the column's purpose.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15, to
generate rules. If a cell contains no data, then its template is ignored. (This would mean that some
condition or action does not apply for that rule row.) Rule rows are read until there is a blank row.
Multiple RuleTables can exist in a sheet. Row 20 contains another keyword, and a value. The row
positions of keywords like this do not matter (most people put them at the top) but their column
should be the same one where the RuleTable or RuleSet keywords should appear. In our case
column C has been chosen to be significant, but any other column could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

/lrow 18
rul e "Cheese fans_ 18"
when

187

User Guide

Per son(age=="42")
Cheese(type=="stilton")
t hen
list.add("A d man stilton");
end

@ Note
The constraints age=="42" and type=="sti | ton" are interpreted as single con-
straints, to be added to the respective ObjectType in the cell above. If the cells
above were spanned, then there could be multiple constraints on one "column".

Warning

Very large decision tables may have very large memory requirements.

6.5.4. Spreadsheet Syntax

6.5.4.1. Spreadsheet Structure

There are two types of rectangular areas defining data that is used for generating a DRL file. One,
marked by a cell labelled Rul eSet , defines all DRL items except rules. The other one may occur
repeatedly and is to the right and below a cell whose contents begin with Rul eTabl e. These areas
represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the Rul eSet cell and containing a keyword
designating the kind of value contained in the other one that follows in the same row.

The columns of a Rule Table area define patterns and constraints for the left hand sides of the
rules derived from it, actions for the consequences of the rules, and the values of individual rule
attributes. Thus, a Rule Table area should contain one or more columns, both for conditions and
actions, and an arbitrary selection of columns for rule attributes, at most one column for each of
these. The first four rows following the row with the cell marked with Rul eTabl e are earmarked
as header area, mostly used for the definition of code to construct the rules. It is any additional
row below these four header rows that spawns another rule, with its data providing for variations
in the code defined in the Rule Table header.

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

6.5.4.2. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes.
While entries for constructs may be used repeatedly, each rule attribute may be given at most

188

User Guide

once, and it applies to all rules unless it is overruled by the same attribute being defined within
the Rule Table area.

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a key-
word and the one to its right the value, as shown in the table below. This sequence of cell pairs
may be interrupted by blank rows or even a Rule Table, as long as the column marked by Rul eSet
is upheld as the one containing the keyword.

Table 6.5. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the | Must be First entry.
generated DRL file. Optional,
the defaultis rul e_t abl e.

Sequential "true" or "false". If "true", then | Optional, at most once. If omit-
salience is used to ensure that | ted, no firing order is imposed.
rules fire from the top down.

EscapeQuotes "true” or "false". If "true", then | Optional, at most once. If omit-
guotation marks are escaped | ted, quotation marks are es-
so that they appear literally in | caped.
the DRL.

Import A comma-separated list of Ja- = Optional, may be used repeat-
va classes to import. edly.

Variables Declarations of DRL globals, | Optional, may be used repeat-
i.e., a type followed by a vari- | edly.
able name. Multiple global de-
finitions must be separated
with a comma.

Functions One or more function defini- | Optional, may be used repeat-
tions, according to DRL syn- | edly.
tax.

Queries One or more query definitions, | Optional, may be used repeat-
according to DRL syntax. edly.

Declare One or more declarative | Optional, may be used repeat-
types, according to DRL syn- | edly.
tax.

Warning

In some locales, MS Office, LibreOffice and OpenOffice will encode a double quoth
" differently, which will cause a compilation error. The difference is often hard to
see. For example: “ A" will fail, but " A" will work.

189

User Guide

For defining rule attributes that apply to all rules in the generated DRL file you can use any of the
entries in the following table. Notice, however, that the proper keyword must be used. Also, each
of these attributes may be used only once.

Important

Rule attributes specified in a Rule Set area will affect all rule assets in the same
package (not only in the spreadsheet). Unless you are sure that the spreadsheet
is the only one rule asset in the package, the recommendation is to specify rule
attributes not in a Rule Set area but in a Rule Table columns for each rule instead.

Table 6.6. Rule attribute entries in the Rule Set area

Keyword Initial Value

PRIORITY P An integer defining the
"salience" value for the rule.
Overridden by the "Sequential"

flag.

DURATION D A long integer value defining
the "duration” value for the rule.

TIMER T A timer definition. See "Timers
and Calendars".

ENABLED B A Boolean value. "true" en-
ables the rule; "false" disables
the rule.

CALENDARS E A calendars definition. See

"Timers and Calendars".

NO-LOOP U A Boolean value. "true” inhibits
looping of rules due to changes
made by its consequence.

LOCK-ON-ACTIVE L A Boolean value. "true" in-
hibits additional activations of
all rules with this flag set with-
in the same ruleflow or agenda
group.

AUTO-FOCUS F A Boolean value. "true" for a
rule within an agenda group
causes activations of the rule to
automatically give the focus to
the group.

190

User Guide

Keyword Initial Value

ACTIVATION-GROUP X A string identifying an activa-
tion (or XOR) group. Only one
rule within an activation group
will fire, i.e., the first one to
fire cancels any existing activa-
tions of other rules within the
same group.

AGENDA-GROUP G A string identifying an agenda
group, which has to be acti-
vated by giving it the "focus",
which is one way of control-
ling the flow between groups of
rules.

RULEFLOW-GROUP R A string identifying a rule-flow
group.

6.5.4.3. Rule Tables

All Rule Tables begin with a cell containing "RuleTable", optionally followed by a string within the
same cell. The string is used as the initial part of the name for all rules derived from this Rule
Table, with the row number appended for distinction. (This automatic naming can be overridden
by using a NAME column.) All other cells defining rules of this Rule Table are below and to the
right of this cell.

The next row defines the column type, with each column resulting in a part of the condition or
the consequence, or providing some rule attribute, the rule name or a comment. The table below
shows which column headers are available; additional columns may be used according to the table
showing rule attribute entries given in the preceding section. Note that each attribute column may
be used at most once. For a column header, either use the keyword or any other word beginning
with the letter given in the "Initial" column of these tables.

Table 6.7. Column Headers in the Rule Table

Keyword Initial Value Usage

NAME N Provides the name At mostone column
for the rule generat-
ed from that row. The
default is constructed
from the text following
the RuleTable tag and
the row number.

191

User Guide

Keyword
DESCRIPTION

Initial

Value

A text, resulting in a

Usage

At most one column

comment within the
generated rule.

CONDITION C Code snippet and in- At least one per rule
terpolated values for table

constructing a con-

straint within a pattern

in a condition.

ACTION A Code snippet and in- At least one per rule
terpolated values for table

constructing an action

for the consequence

of the rule.

METADATA @ Code snippet and in- Optional, any number
terpolated values for of columns
constructing a meta-

data entry for the rule.

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

» Text in the first cell below CONDITION develops into a pattern for the rule condition, with the
snippet in the next line becoming a constraint. If the cell is merged with one or more neighbours,
a single pattern with multiple constraints is formed: all constraints are combined into a paren-
thesized list and appended to the text in this cell. The cell may be left blank, which means that
the code snippet in the next row must result in a valid conditional element on its own.

To include a pattern without constraints, you can write the pattern in front of the text for another
pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may
be appended to the pattern.

If the pattern ends with "eval", code snippets are supposed to produce boolean expressions for
inclusion into a pair of parentheses after "eval".

Text in the second cell below CONDITION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in
the column. If you want to create a constraint consisting of a comparison using "==" with
the value from the cells below, the field selector alone is sufficient. Any other comparison
operator must be specified as the last item within the snippet, and the value from the cells
below is appended. For all other constraint forms, you must mark the position for including
the contents of a cell with the symbol $par am Multiple insertions are possible by using the
symbols $1, $2, etc., and a comma-separated list of values in the cells below.

192

User Guide

A text according to the pattern f or al | (delimiter) { snippet} is expanded by repeating the
snippet once for each of the values of the comma-separated list of values in each of the cells
below, inserting the value in place of the symbol $ and by joining these expansions by the
given delimiter. Note that the forall construct may be surrounded by other text.

2. If the cell in the preceding row is not empty, the completed code snippet is added to the
conditional element from that cell. A pair of parentheses is provided automatically, as well as
a separating comma if multiple constraints are added to a pattern in a merged cell.

If the cell above is empty, the interpolated result is used as is.

« Textin the third cell below CONDITION is for documentation only. It should be used to indicate
the column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the conditional element or constraint for this rule.

Given a column headed ACTION, the cells in successive lines result in an action statement.

« Textin the first cell below ACTION is optional. If present, it is interpreted as an object reference.
» Text in the second cell below ACTION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in the
column. For a singular insertion, mark the position for including the contents of a cell with
the symbol $par am Multiple insertions are possible by using the symbols $1, $2, etc., and a
comma-separated list of values in the cells below.

A method call without interpolation can be achieved by a text without any marker symbols.
In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

2. If the first cell is not empty, its text, followed by a period, the text in the second cell and a
terminating semicolon are stringed together, resulting in a method call which is added as an
action statement for the consequence.

If the cell above is empty, the interpolated result is used as is.

« Textin the third cell below ACTION is for documentation only. It should be used to indicate the
column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the action statement for this rule.

193

User Guide

@ Note

Using $1 instead of $par amworks in most cases, but it will fail if the replacement
text contains a comma: then, only the part preceding the first comma is inserted.
Use this "abbreviation" judiciously.

Given a column headed METADATA, the cells in successive lines result in a metadata annotation
for the generated rules.

Text in the first cell below METADATA is ignored.

« Textin the second cell below METADATA is subject to interpolation, as described above, using
values from the cells in the rule rows. The metadata marker character @is prefixed automatically,
and thus it should not be included in the text for this cell.

« Text in the third cell below METADATA is for documentation only. It should be used to indicate
the column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the metadata annotation for this rule.

6.5.4.4. Examples

The various interpolations are illustrated in the following example.

Example 6.5. Interpolating cell data
If the template is Foo(bar == $paran) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42, 43, the result will be
Foo(bar < 42, baz ==43).

The template foral | (&) {bar != $} with a cell containing 42, 43 results in bar = 42 &&
bar = 43.

The next example demonstrates the joint effect of a cell defining the pattern type and the code
shippet below it.

194

User Guide

RuleTable Cheese fans
16
lage ype
17 Persons age Cheese type
18]
42 stilton
15
21 cheddar

This spreadsheet section shows how the Per son type declaration spans 2 columns, and thus both
constraints will appear as Person(age == ..., type == ...). Since only the field names are
present in the snippet, they imply an equality test.

In the following example the marker symbol $par amis used.

[CONDITION
Person

|pge=="§param”

Persons age

The result of this column is the pattern Per son(age == "42")). You may have noticed that the
marker and the operator "==" are redundant.

The next example illustrates that a trailing insertion marker can be omitted.

195

User Guide

[CONDITION
Person

lage <

Persons age

42

Here, appending the value from the cell is implied, resulting in Per son(age < "42")).

You can provide the definition of a binding variable, as in the example below. .

W

c. Cheese

type

Cheese type

stilton

Here, the result is c: Cheese(type == "stilton"). Note that the quotes are provided auto-
matically. Actually, anything can be placed in the object type row. Apart from the definition of a
binding variable, it could also be an additional pattern that is to be inserted literally.

A simple construction of an action statement with the insertion of a single value is shown below.

196

User Guide

list.add("§ param®);

Log

Old man stilton

The cell below the ACTION header is left blank. Using this style, anything can be placed in the con-
sequence, not just a single method call. (The same technique is applicable within a CONDITION
column as well.)

Below is a comprehensive example, showing the use of various column headers. It is not an error
to have no value below a column header (as in the NO-LOOP column): here, the attribute will not
be applied in any of the rules.

RuleTable Qd Oriver | |
CONDITION CONDITION RULEFLOW-GROUP NO-LOGP ACTION ACTION

8 Sdriver: Driver

9 iptions) licenceYears priarClaims insertinew Aporave{"Sparam”ll; ystem.out prin
106 ase Persans age Frior Claims Inserting approvment Log

11 d guy 30 1 risk asssssment Safe and matura ©ld driver Approved

13
14
15
16

Figure 6.17. Example usage of keywords for imports, headers, etc.

And, finally, here is an example of Import, Variables and Functions.

197

User Guide

[Control Cajas[1]

Import foo.Bar, bar.Baz

Variables Parameters parametros, RulesResult resultado,
EvalDate fecha

Functions function boolean isRango(int iValor, int iRangoInicio, T

int iRangoFinal) {
if (iRangolnicio <= iValor && iValor <= iRangoFinal)
return true;
return false;

¥

function boolean isIgualTipo(TipoVO tipoVO, int
p_ftipo, boolean isMNull) {

if (tipovO == null)

return isMull;

return tipoV0.getSecuendia().intValue() == p_tipo;
¥

Figure 6.18. Example usage of keywords for functions, etc.

Multiple package names within the same cell must be separated by a comma. Also, the pairs of
type and variable names must be comma-separated. Functions, however, must be written as they
appear in a DRL file. This should appear in the same column as the "RuleSet" keyword; it could
be above, between or below all the rule rows.

@ Note
It may be more convenient to use Import, Variables, Functions and Queries repeat-
edly rather than packing several definitions into a single cell.

6.5.5. Creating and integrating Spreadsheet based Decision Ta-
bles

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There
is really only one class to look at: Spr eadsheet Conpi | er. This class will take spreadsheets in
various formats, and generate rules in DRL (which you can then use in the normal way). The
Spr eadsheet Conpi | er can just be used to generate partial rule files if it is wished, and assemble
it into a complete rule package after the fact (this allows the separation of technical and non-
technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being
used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an
xls compatible spreadsheet editor will need to be used).

198

User Guide

Yrip-0o-ur |EHEE

| New Rule Project d
MNew Rule resource

Mew Domain Specific Language
New Decision Table

1 n LN b

Figure 6.19. Wizard in the IDE
6.5.6. Managing Business Rules in Decision Tables

6.5.6.1. Workflow and Collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend
themselves to close collaboration between IT and domain experts, while making the business
rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be
something like:

1. Business analyst takes a template decision table (from a repository, or from IT)
2. Decision table business language descriptions are entered in the table(s)
3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language (descrip-
tions) to scripts (this may involve software development of course, if it is a new application or
data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around
is also fine etc).

7. In parallel, the technical person can develop test cases for the rules (liaising with business
analysts) as these test cases can be used to verify rules and rule changes once the system
is running.

6.5.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into spread-
sheets, such as validating fields. Lists that are stored in other worksheets can be used to provide
valid lists of values for cells, like in the following diagram.

<title> Wizard in the IDE </title>

199

User Guide

9
w

& ~
—0 |
—N -
15 |

T
—y |
j— 'III'III' —
— v‘ -
Figure 6.20.

Some applications provide a limited ability to keep a history of changes, but it is recommended to
use an alternative means of revision control. When changes are being made to rules over time,
older versions are archived (many open source solutions exist for this, such as Subversion or Git).

6.5.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates" (in
the drools-templates module). These use any tabular data source as a source of rule data - pop-
ulating a template to generate many rules. This can allow both for more flexible spreadsheets,
but also rules in existing databases for instance (at the cost of developing the template up front
to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which
part of the rule is data-driven. So whilst you can do everything you could do in decision tables
you can also do the following:

 store your data in a database (or any other format)

conditionally generate rules based on the values in the data

use data for any part of your rules (e.g. condition operator, class name, property name)
« run different templates over the same data

As an example, a more classic decision table is shown, but without any hidden rows for the rule
meta data (so the spreadsheet only contains the raw data to generate the rules).

200

User Guide

Case PErsons age Cheese type Log
Qld
auy I 42 stilton Old man stilton
Young guy
21 cheddar Young man cheddar

Figure 6.21. Template data

See the Exanpl eCheese. x| s in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows
1 and 2 containing rule metadata. With rule templates the data is completely separate from the
rules. This has two handy consequences - you can apply multiple rule templates to the same data
and your data is not tied to your rules at all. So what does the template look like?

© 00N O O WN B

NP R R R R R B R B
O © N UM WNER O

tenpl at e header
age

type

| og

package org. drool s. exanpl es. t enpl at es;

gl obal java.util.List list;

tenpl ate "cheesef ans”

rul e "Cheese fans_@row rowNunber}"
when

Person(age == @age})
Cheese(type == "@type}")
t hen
list.add(" @Il og}");
end

end tenpl ate

Annotations to the preceding program listing:

 Line 1: All rule templates start with t enpl at e header .

» Lines 2-4: Following the header is the list of columns in the order they appear in the data. In
this case we are calling the first column age, the second t ype and the third | og.

* Line 5: An empty line signifies the end of the column definitions.

201

User Guide

 Lines 6-9: Standard rule header text. This is standard rule DRL and will appear at the top of the
generated DRL. Put the package statement and any imports and global and function definitions
into this section.

* Line 10: The keyword t enpl at e signals the start of a rule template. There can be more than
one template in a template file, but each template should have a unique name.

e Lines 11-18: The rule template - see below for details.

Line 20: The keywords end t enpl at e signify the end of the template.

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is
currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of
data and enables you to generate unique rule names. For each row of data a rule will be generated
with the values in the data substituted for the tokens in the template. With the example data above
the following rule file would be generated:

package org. drool s. exanpl es. tenpl at es;
global java.util.List list;

rul e "Cheese fans_1"

when
Person(age == 42)
Cheese(type == "stilton")
then

list.add("Od man stilton");
end

rul e "Cheese fans_2"

when
Person(age == 21)
Cheese(type == "cheddar")
then

list.add("Young man cheddar");
end

The code to run this is simple:

Deci si onTabl eConfi gurati on dtabl econfiguration =
Know edgeBui | der Fact ory. newDeci si onTabl eConfi guration();
dt abl econfi gurati on. set| nput Type(Deci si onTabl el nput Type. XLS);

Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnowl edgeBui | der () ;

kbui | der . add(Resour ceFact ory. newC assPat hResour ce(get Spreadsheet Nane(),
getd ass()),
Resour ceType. DTABLE,
dt abl econfiguration);

202

User Guide

6.6. Logging

One way to illuminate the black box that is a rule engine, is to play with the logging level.

Everything is logged to SLF4J [http://www.slIf4j.org/], which is a simple logging facade that can
delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a depen-
dency to the logging adaptor for your logging framework of choice. If you're not using any logging
framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<gr oupl d>ch. gos. | ogback</ gr oupl d>
<artifact!|d>l ogback-cl assic</artifactld>
<versi on>1. x</ ver si on>

</ dependency>

Configure the logging level on the package or g. dr ool s. For example:

In Logback, configure it in your | ogback. xni file:

<configuration>

<l ogger nane="org. drool s" |evel ="debug"/>

<configuration>

In Log4J, configure it in your | og4j . xni file:

<l og4j :configuration xm ns:|og4j="http://]jakarta. apache. org/log4j/">
<cat egory nane="org. drool s">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>

203

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 7. Rule Language
Reference

7.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports
natural and domain specific languages via "expanders" that allow the language to morph to your
problem domain. This chapter is mostly concerted with this native rule format. The diagrams used
to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the
language terms. The technically very keen may also refer to DRL. g which is the Antlr3 grammar
for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with
content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure
for you.

7.1.1. A rule file

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that
are assigned and used by your rules and queries. However, you are also able to spread your
rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -
spreading rules across files can help with managing large numbers of rules. A DRL file is simply
a text file.

The overall structure of a rule file is:

Example 7.1. Rules file

package package- nane
i mports

gl obal s

functions

queries

rul es

The order in which the elements are declared is not important, except for the package name that,
if declared, must be the first element in the rules file. All elements are optional, so you will use
only those you need. We will discuss each of them in the following sections.

204

Rule Language Reference

7.1.2. What makes a rule

For the inpatients, just as an early view, a rule has the following rough structure:

rule "nane"
attributes
when
LHS
t hen
RHS

end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are
optional, as are newlines. Attributes are simple (always optional) hints to how the rule should
behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered
below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific
languages, where lines are processed one by one and spaces may be significant to the domain
language.

7.2. Keywords

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,
properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

e true
e fal se
e null

Soft keywords are just recognized in their context, enabling you to use these words in any other
place if you wish, although, it is still recommended to avoid them, to avoid confusions, if possible.
Here is a list of the soft keywords:

e | ock-on-active

date-effective
e date-expires

* no-| oop

205

Rule Language Reference

aut o- f ocus
activati on-group
agenda- gr oup
rul ef | ow group
entry- poi nt
duration
package

i mport

di al ect
sal i ence
enabl ed
attributes
rule

ext end

when

then

tenpl ate
query

decl are
function

gl obal

eval

not

or
and

exi sts

206

Rule Language Reference

e forall

e accumulate
e collect

e from

e action

e reverse

* result

* end

e over

e init

Of course, you can have these (hard and soft) words as part of a method name in camel case,
like notSomething() or accumulateSomething() - there are no issues with that scenario.

Although the 3 hard keywords above are unlikely to be used in your existing domain models, if
you absolutely need to use them as identifiers instead of keywords, the DRL language provides
the ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave
accents, like this:

Hol iday(“true’ == "yes") // please note that Drools will resolve that reference to the nmethod
Hol i day. i sTrue()

7.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when
they are encountered, except inside semantic code blocks, like the RHS of a rule.

7.3.1. Single line comment

To create single line comments, you can use '//'. The parser will ignore anything in the line after
the comment symbol. Example:

rule "Testing Comments"when /Il this is a single line comment eval (true) // this is a
comment in the sane |ine of a patternthen /1 this is a comment inside a semantic code bl ockend
Com

ment s"when /1 this is a single line
comment eval (true) // this is a cotmment in the sane line of a
patternthen /] this is a coment inside a senmantic code

207

Rule Language Reference

A Warning

'‘#' for comments has been removed.

7.3.2. Multi-line comment

O—»[Pl]—-[fext]—-[' l—O

Figure 7.1. Multi-line comment

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.
Example:

rule "Test Milti-line Comrents"when /* this is a multi-line coment in the left hand
side of a rule */ eval (true)then /* and this is a multi-line coment in the
right hand side of a rule */end

Com

ment s" when /* this is a multi-line

comment in the left hand side of a rule

*/ eval (true

)then /* and this is a multi-line

comment in the right hand side of a rule

*/

7.4. Error Messages

Drools 5 introduces standardized error messages. This standardization aims to help users to find
and resolve problems in a easier and faster way. In this section you will learn how to identify and
interpret those error messages, and you will also receive some tips on how to solve the problems
associated with them.

7.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use
the following example:

[ERR 101] Line :35% no viable alternative at input *)" in rule “test rule® in pattern WorkerPerformanceContext

1st 2nd

Block Block 3rd Block 4th Block sth Block

Figure 7.2. Error Message Format
1st Block: This area identifies the error code.

2nd Block: Line and column information.

208

Rule Language Reference

3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where
the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.
7.4.2. Error Messages Description

7.4.2.1. 101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify
an alternative. Here are some examples:

Example 7.2.

1. rule one

2 when

3 exi sts Foo()
4: exits Bar()
5 then

6: end

The above example generates this message:

* [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next
example:

Example 7.3.

1: package org.drool s. exanpl es; 2: rule3: when4: bj ect()5: then6: System out. println("A
RHS"); 7: end

or g. drool s. exanpl es; 2:

rul e3:

when4:

Obj ect () 5:

t hen6: System out . println("A

RHS") ; 7:

Now the above code generates this message:

* [ERR 101] Line 3:2 no viable alternative at input "WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but
it's in the wrong place since the the rule name is missing.

209

Rule Language Reference

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a
sample of a lexical problem:

Example 7.4.

rule sinple_rule
when
Student (name == "Andy)
t hen
end

qF B

The above code misses to close the quotes and because of this the parser generates this error
message:

* [ERR 101] Line 0:-1 no viable alternative at input '<eof>' in rule simple_rule in pattern Student

7.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn't #nd at the
current input position. Here are some samples:

Example 7.5.

1: rule sinple_rule
2: when
3: foo3 : Bar(

The above example generates this message:

« [ERR 102] Line 0:-1 mismatched input '<eof>' expecting ') in rule simple_rule in pattern Bar

To fix this problem, it is necessary to complete the rule statement.

210

Rule Language Reference

The following code generates more than one error message:

Example 7.6.

1. package org.drools.exanples;2:3: rule "Avoid NPE on wong syntax"4: whens:

not(Cheese((type == "stilton", price == 10) || (type == "brie", price == 15)) from
$cheeselLi st) 6: then7: Systemout.println("OK");8: end

org. drool s. exanpl es;
2:3: rule "Avoid NPE on wong

synt ax" 4:

whens5: not (Cheese((type == "stilton", price == 10) || (type == "brie", price == 15)
) from $cheeselLi st

) 6:

t hen7:

Systemout . println("CK"); 8:

These are the errors associated with this source:

* [ERR 102] Line 5:36 mismatched input '," expecting ' in rule "Avoid NPE on wrong syntax" in
pattern Cheese

* [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"
* [ERR 102] Line 5:106 mismatched input ')’ expecting 'then' in rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (',") by AND
operator ('&&").

@ Note
In some situations you can get more than one error message. Try to fix one by
one, starting at the first one. Some error messages are generated merely as con-
sequences of other errors.

7.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords. This sample shows exactly this situation:

Example 7.7.

1. package nesting; 2: dialect "nvel" 3: 4: inport org.drools.conpiler.Person 5: inport
org.drool s. conpil er. Address 6: 7:
nesting; 2: dialect
"mvel "
3: 4: inport
org. drool s. conpil er.Person 5: inport

211

Rule Language Reference

org. drool s. conpi | er. Addr ess
6: fdsfdsfds

8

9: rule "test sonething"

10: when

11: p: Person(nanme=="M chael ")
12: t hen

13: p.nane = "other";

14: System out. printl n(p. nane);
15: end

With this sample, we get this error message:

* [ERR 103] Line 7.0 rule ‘rule_key' failed predicate:
{(validateldentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn't identify it as the soft keyword r ul e.

: Note
1
This error is very similar to 102: Mismatched input, but usually involves soft key-
words.

7.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with
a semicolon. Check this example:

Example 7.8.

rule sinple_rule
when
eval (abc();)
t hen

9 eOPNE

end

Due to the trailing semicolon within eval, we get this error message:

* [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.
7.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,
but the subrule did not match anything. Simply put: the parser has entered a branch from where
there is no way out. This example illustrates it:

212

Rule Language Reference

Example 7.9.

1. tenplate test_error2: aa s 11;3: end
test_error2: aa s

11; 3:

This is the message associated to the above sample:

* [ERR 105] Line 2:2 required (...)+ loop did not match anything at input 'aa’ in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type
which might begin a new template slot nor a possible start for any other rule file construct.

7.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development
team.

7.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The
package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

Itis possible to assemble rules from multiple rule sources, and have one top level package config-
uration that all the rules are kept under (when the rules are assembled). Although, it is not possible
to merge into the same package resources declared under different names. A single Rulebase
may, however, contain multiple packages built on it. A common structure is to have all the rules
for a package in the same file as the package declaration (so that is it entirely self-contained).

The following railroad diagram shows all the components that may make up a package. Note that
a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,
they can appear in any order in the rule file, with the exception of the package statement, which
must be at the top of the file. In all cases, the semicolons are optional.

213

Rule Language Reference

-

£
H g

Figure 7.3. package

Notice that any rule attribute (as described the section Rule Attributes) may also be written at
package level, superseding the attribute's default value. The modified default may still be replaced
by an attribute setting within a rule.

7.5.1. import

Kl
I “

Ot) o J—— L0

Figure 7.4. import

e

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. Drools automatically imports classes
from the Java package of the same name, and also from the package j ava. | ang.

7.5.2. global

O—-[‘global’ H class H name]——»O

Figure 7.5. global

214

Rule Language Reference

With gl obal you define global variables. They are used to make application objects available
to the rules. Typically, they are used to provide data or services that the rules use, especially
application services used in rule consequences, and to return data from the rules, like logs or
values added in rule consequences, or for the rules to interact with the application, doing callbacks.
Globals are not inserted into the Working Memory, and therefore a global should never be used to
establish conditions in rules except when it has a constantimmutable value. The engine cannot be
notified about value changes of globals and does not track their changes. Incorrect use of globals
in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and
all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

global java.util.List nydoballList;rule "Using a global"when eval (true)then
myd obal Li st.add("Hello Wrld");end

nmyd obal Li st; rul e "Using
a gl obal "when eval (

true)then nmyd obal Li st.add("Hello

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArraylList();
Ki eSessi on ki eSessi on = ki ebase. newKi eSessi on();
ki eSessi on. set d obal ("nyd obal List", list);

Note that these are just named instances of objects that you pass in from your application to
the working memory. This means you can pass in any object you want: you could pass in a
service locator, or perhaps a service itself. With the new f r omelement it is now common to pass
a Hibernate session as a global, to allow f r omto pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the
rule engine, you obtain your emailService object, and then set it in the working memory. In the
DRL, you declare that you have a global of type EmailService, and give it the name "email". Then
in your rule consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that
purpose. Rules always reason and react to the working memory state, so if you want to pass data
from rule to rule, assert the data as facts into the working memory.

215

Rule Language Reference

It is strongly discouraged to set or change a global value from inside your rules. We recommend
to you always set the value from your application using the working memory interface.

7.6. Function

)

Le[‘function’ | re.:rum-q-pg-]
Lm0 —
O

Figure 7.6. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java
classes. They can't do anything more than what you can do with helper classes. (In fact, the
compiler generates the helper class for you behind the scenes.) The main advantage of using
functions in a rule is that you can keep the logic all in one place, and you can change the functions
as needed (which can be a good or a bad thing). Functions are most useful for invoking actions
on the consequence (t hen) part of a rule, especially if that particular action is used over and over
again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String name) { return "Hello "+nane+"!";}
{ return "Hello "+nane
e

Note that the f unct i on keyword is used, even though its not really part of Java. Parameters to
the function are defined as for a method, and you don't have to have parameters if they are not
needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo. hel | o() . Drools supports
the use of function imports, so all you would need to do is:

inmport function ny.package. Foo. hel |l o

216

Rule Language Reference

Irrespective of the way the function is defined or imported, you use a function by calling it by its
name, in the consequence or inside a semantic code block. Example:

rule "using a static functi on"when eval (true)then System out. println(hello("Bob"));end
ic
function"when eval (

true)then Systemout. println(hello("Bob"

7.7. Type Declaration

I S G R g

Figure 7.7. meta_data

217

O

Rule Language Reference

—-[‘declars’]—-[name

.
F o Rt
I |

I

rmata_data

Figure 7.8. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,
and to allow the declaration of metadata for types.

Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,
however, users may want to define the model directly to the rules engine, without worrying about
creating models in a lower level language like Java. At other times, there is a domain model
already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and is consistent
among all instances of that fact type. This meta information may be queried at runtime by the
engine and used in the reasoning process.

7.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword decl ar e, followed by the list of fields,
and the keyword end. A new fact must have a list of fields, otherwise the engine will look for an
existing fact class in the classpath and raise an error if not found.

218

Rule Language Reference

Example 7.10. Declaring a new fact type: Address

decl are Address nunber : int streetNanme : String city : String
dress nunber :

int street Nanme :

String city :

end

The previous example declares a new fact type called Addr ess. This fact type will have three
attributes: nunber, street Nane and ci ty. Each attribute has a type that can be any valid Java
type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Per son:

Example 7.11. declaring a new fact type: Person

decl are Person nanme : String dateOFBirth : java.util.Date address : Address
son nane :

String dateOBirth :

java.util.Date address :

end

As we can see on the previous example, dat eOf Bi rt h is of type j ava. uti | . Dat e, from the Java
API, while addr ess is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using
the i nport clause, as previously discussed.

Example 7.12. Avoiding the need to use fully qualified class names by using
import

inmport java.util.Date

decl are Person
nane : String
dateOfBirth : Date
address : Address
end

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements
a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

219

Rule Language Reference

Example 7.13. generated Java class for the previous Person fact type
declaration

public class Person inplenents Serializable {
private String nang;
private java.util.Date dateO'Birth;
private Address address;

/'l enpty constructor
public Person() {...}

[/ constructor with all fields
public Person(String name, Date dateO'Birth, Address address) {...}

/] if keys are defined, constructor with keys
public Person(...keys...) {...}

/] getters and setters
/'l equal s/ hashCode
/1 toString

Since the generated class is a simple Java class, it can be used transparently in the rules, like
any other fact.

Example 7.14. Using the declared types in rules

rule "Using a declared Type"
when
$p : Person(nanme == "Bob")
then
/!l Insert Mark, who is Bob's mate.
Person mark = new Person();
mar k. set Name(" Mar k") ;
insert(mark);
end

7.7.1.1. Declaring enumerative types
DRL also supports the declaration of enumerative types. Such type declarations require the ad-

ditional keyword enum, followed by a comma separated list of admissible values terminated by
a semicolon.

Example 7.15.

decl are enum DaysOf Week
SUN, MON, TUE, VD, THU, FRI, SAT;

220

Rule Language Reference

end
The compiler will generate a valid Java enum, with static methods valueOf() and values(), as well
as instance methods ordinal(), compareTo() and name().

Complex enums are also partially supported, declaring the internal fields similarly to a regular
type declaration. Notice that as of version 6.x, enum fields do NOT support other declared types
or enums

Example 7.16.

decl are enum DaysOf Week
SUN(" Sunday"), MON(" Monday"), TUE(" Tuesday"), VED("Wednesday"), THU(" Thur sday"), FRI (" Fri day"), SAT(" Sat urday") ;

full Nanme : String
end

Enumeratives can then be used in rules

Example 7.17. Using declarative enumerations in rules

rule "Using a declared Enunt
when

$p : Enpl oyee(dayOrf == DaysOf Week. MONDAY)
then

end

7.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes
and rules. Drools uses the at sign (@) to introduce metadata, and it always uses the form:

@ret adat a_key(netadata_val ue)

The parenthesized metadata_value is optional.

For instance, if you want to declare a metadata attribute like aut hor, whose value is Bob, you
could simply write:

221

Rule Language Reference

Example 7.18. Declaring a metadata attribute

@ut hor (Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special mean-
ing to the engine, while others are simply available for querying at runtime. Drools allows the
declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the attributes of a fact type are assigned to the fact type, while metadata declared after an
attribute are assigned to that particular attribute.

Example 7.19. Declaring metadata attributes for fact types and attributes

inport java.util.Date

decl are Person
@ut hor (Bob)
@lat eOf Creati on(01- Feb-2009)

name : String @ey @maxLength(30)
dateOBirth : Date

address : Address
end

In the previous example, there are two metadata items declared for the fact type (@ut hor and
@lat eOX Cr eat i on) and two more defined for the name attribute (@xey and @maxLengt h). Please
note that the @ey metadata has no required value, and so the parentheses and the value were
omitted.:

7.7.2.1. Predefined class level annotations

Some annotations have predefined semantics that are interpreted by the engine. The following is
a list of some of these predefined annotations and their meaning.

7.7.2.1.1. @role(<fact | event>)

The @role annotation defines how the engine should handle instances of that type: either as
regular facts or as events. It accepts two possible values:

 fact : this is the default, declares that the type is to be handled as a regular fact.
« event : declares that the type is to be handled as an event.

The following example declares that the fact type StockTick in a stock broker application is to be
handled as an event.

222

Rule Language Reference

Example 7.20. declaring a fact type as an event

import sone. package. St ockTi ck

decl are St ockTi ck
@ol e(event)
end

The same applies to facts declared inline. If StockTick was a fact type declared in the DRL itself,
instead of a previously existing class, the code would be:

Example 7.21. declaring a fact type and assigning it the event role

decl are StockTi ck
@ol e(event)

datetine : java.util.Date
synbol : String
price : double

end

7.7.2.1.2. @typesafe(<boolean>)

By default all type declarations are compiled with type safety enabled; @typesafe(false) provides
a means to override this behaviour by permitting a fall-back, to type unsafe evaluation where all
constraints are generated as MVEL constraints and executed dynamically. This can be important
when dealing with collections that do not have any generics or mixed type collections.

7.7.2.1.3. @timestamp(<attribute name>)

Every event has an associated timestamp assigned to it. By default, the timestamp for a given
event is read from the Session Clock and assigned to the event at the time the event is inserted
into the working memory. Although, sometimes, the event has the timestamp as one of its own
attributes. In this case, the user may tell the engine to use the timestamp from the event's attribute
instead of reading it from the Session Clock.

@i mestanp(<attributeNane>)

To tell the engine what attribute to use as the source of the event's timestamp, just list the attribute
name as a parameter to the @timestamp tag.

Example 7.22. declaring the VoiceCall timestamp attribute

decl are Voi ceCal |

223

Rule Language Reference

Cal | @ol e(event)
@i nmestanp(cal | DateTinme)
end

7.7.2.1.4. @duration(<attribute name>)

Drools supports both event semantics: point-in-time events and interval-based events. A point-in-
time event is represented as an interval-based event whose duration is zero. By default, all events
have duration zero. The user may attribute a different duration for an event by declaring which
attribute in the event type contains the duration of the event.

@luration(<attributeName>)

So, for our VoiceCall fact type, the declaration would be:

Example 7.23. declaring the VoiceCall duration attribute

decl are Voi ceCal |
Cal | @ol e(event)
@i nmestanp(cal | DateTinme)
@luration(callDuration)
end

7.7.2.1.5. @expires(<time interval>)

Important

This tag is only considered when running the engine in STREAM mode. Also, ad-
ditional discussion on the effects of using this tag is made on the Memory Man-
agement section. It is included here for completeness.

Events may be automatically expired after some time in the working memory. Typically this hap-
pens when, based on the existing rules in the knowledge base, the event can no longer match
and activate any rules. Although, it is possible to explicitly define when an event should expire.

@xpires(<timeOfset>)

The value of timeOffset is a temporal interval in the form:

[#d] [#h] [#n] [#s] [#[ms]]

224

Rule Language Reference

Where [] means an optional parameter and # means a humeric value.

So, to declare that the VoiceCall facts should be expired after 1 hour and 35 minutes after they
are inserted into the working memory, the user would write:

Example 7.24. declaring the expiration offset for the VoiceCall events

decl are Voi ceCal |

Cal | @ol e(event)
@i mestanp(cal | DateTine)
@luration(callDuration)
@xpires(1h35m)

end

The @expires policy will take precedence and override the implicit expiration offset calculated
from temporal constraints and sliding windows in the knowledge base.

7.7.2.1.6. @propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean(tm) spec, now can
be annotated so that the engine register itself to listen for changes on fact properties. The boolean
parameter that was used in the insert() method in the Drools 4 API is deprecated and does not
exist in the drools-api module.

Example 7.25. @propertyChangeSupport

decl are Person
son @r opertyChangeSupport
end

7.7.2.1.7. @propertyReactive
Make this type property reactive. See Fine grained property change listeners section for details.
7.7.2.2. Predefined attribute level annotations

As noted before, Drools also supports annotations in type attributes. Here is a list of predefined
attribute annotations.

7.7.2.2.1. @key

Declaring an attribute as a key attribute has 2 major effects on generated types:

1. The attribute will be used as a key identifier for the type, and as so, the generated class will
implement the equals() and hashCode() methods taking the attribute into account when com-
paring instances of this type.

225

Rule Language Reference

2. Drools will generate a constructor using all the key attributes as parameters.
For instance:

Example 7.26. example of @key declarations for atype

decl are Person firstName : String @ey lastNane : String @ey age : int
son firstName : String

@xey lastName : String

ey age :

end

For the previous example, Drools will generate equals() and hashCode() methods that will check
the firstName and lastName attributes to determine if two instances of Person are equal to each
other, but will not check the age attribute. It will also generate a constructor taking firstName and
lastName as parameters, allowing one to create instances with a code like this:

Example 7.27. creating an instance using the key constructor

Person person = new Person("John", "Doe");

7.7.2.2.2. @position

Patterns support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name =="mark") can be rewritten as Person("mark";).
The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
name : String
shop : String
price : int
end

The default order is the declared order, but this can be overridden using @position

decl are Cheese
name : String @osition(1)
shop : String @osition(2)
price : int @osition(0)

226

Rule Language Reference

end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces of methods yet.

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to differen-
tiate the positional section from the named argument section. Variables and literals and expres-
sions using just literals are supported in positional arguments, but not variables.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

@Position is inherited when beans extend each other; while not recommended, two fields may
have the same @position value, and not all consecutive values need be declared. If a @position
is repeated, the conflict is solved using inheritance (fields in the superclass have the precedence)
and the declaration order. If a @position value is missing, the first field without an explicit @ position
(if any) is selected to fill the gap. As always, conflicts are resolved by inheritance and declaration
order.

decl are Cheese
nane @ String
shop : String @osition(2)
price : int @osition(0)
end

decl are SeasonedCheese extends Cheese
year : Date @osition(0)
origin : String @osition(6)
country : String

end

In the example, the field order would be : price (@position 0 in the superclass), year (@position
0 in the subclass), name (first field with no @position), shop (@position 2), country (second field
without @position), origin.

7.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields
in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata
for it, it's possible to write the following code:

227

Rule Language Reference

Example 7.28. Declaring metadata for an existing type

inmport org.drools. exanpl es. Person

decl are Person

@ut hor (Bob)

@at ef Creati on(01- Feb- 2009)
end

Instead of using the import, it is also possible to reference the class by its fully qualified name,
but since the class will also be referenced in the rules, it is usually shorter to add the import and
use the short class nhame everywhere.

Example 7.29. Declaring metadata using the fully qualified class name

decl are org. drool s. exanpl es. Person
@ut hor (Bob)
@lat eOf Creati on(01- Feb-2009)
end

7.7.4. Parametrized constructors for declared types

Generate constructors with parameters for declared types.

Example: for a declared type like the following:

decl are Person firstName : String
son firstName : String@ey
lastName : String @ey
age : int
end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key
fields, and one with all fields.

Person() // paraneterless constructorPerson(String firstName, String |astNanme)Person(String
firstNanme, String |lastNane, int age)

nmet erl ess constructorPerson(String

firstName, String | astName)Person(String firstName, String

7.7.5. Non Typesafe Classes

@typesafe(<boolean>) has been added to type declarations. By default all type declarations are
compiled with type safety enabled; @typesafe(false) provides a means to override this behaviour

228

Rule Language Reference

by permitting a fall-back, to type unsafe evaluation where all constraints are generated as MVEL
constraints and executed dynamically. This can be important when dealing with collections that
do not have any generics or mixed type collections.

7.7.6. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access
and handle facts from the declared types, especially when the application is wrapping the rules
engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,
as we know, that usually requires a lot of work for small results. Therefore, Drools provides a
simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package
where it was declared. So, for instance, in the example below, Person will belong to the
org. drool s. exanpl es package, and so the fully qualified name of the generated class will be
org. drool s. exanpl es. Person.

Example 7.30. Declaring a type in the org.drools.examples package

package org. drool s. exanpl es
inport java.util.Date

decl are Person
nane : String
dateOfBirth : Date
address : Address
end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,
the application will only have access to them at application run time. Therefore, these classes are
not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the ap-
plication code: or g. drool s. defi ni ti on. type. Fact Type. Through this interface, the user can
instantiate, read and write fields in the declared fact types.

Example 7.31. Handling declared fact types through the API

/1 get areference to a know edge base with a decl ared type: Ki eBase kbase = ...// get the decl ared
Fact TypeFact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");// handle the type as necessary:// create instances: Object bob =

personType. new nstance();// set attributes val uespersonType. set(bob, "nanme",
"Bob"); personType. set(bob, "age", 42);// insert fact
into a sessionKi eSession ksession = ...ksession.insert(bob);ksession.fireAlRules();// read

attributesString name = personType. get(bob, "nanme");int age = personType.get(bob, "age");

229

Rule Language Reference

decl ared type: Ki eBase kbase

= ...// get the
decl ared Fact TypeFact Type personType =
kbase. get Fact Type("org. drool s. exanpl es",

"Person");// handle the type
as necessary://
create instances: Obj ect bob

= personType. new nstance();// set
attributes
val uesper sonType. set (bob,

name",
" Bob"
); personType. set (bob,
"age",

42);// insert fact into
a sessi onKi eSessi on ksession
= ...ksession.insert(

bob); ksession.fireA |l Rules();//
read attributesString name = personType. get(bob,
"name");int age = personType.get(bob,

The API also includes other helpful methods, like setting all the attributes at once, reading values

from a Map, or reading all attributes at once, into a Map.

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection
underneath, relying on much more performant accessors implemented with generated bytecode.

7.7.7. Type Declaration 'extends'

Type declarations now support 'extends' keyword for inheritance

In order to extend a type declared in Java by a DRL declared subtype, repeat the supertype in

a declare statement without any fields.

b org. peopl e. Per son
decl are Person end

decl are Student extends Person
school : String
end

decl are LongTer nSt udent extends Student
years : int
course : String

end

230

Rule Language Reference

7.7.8. Traits

WARNING : this feature is still experimental and subject to changes

The same fact may have multiple dynamic types which do not fit naturally in a class hierarchy.
Traits allow to model this very common scenario. A trait is an interface that can be applied (and
eventually removed) to an individual object at runtime. To create a trait rather than a traditional
bean, one has to declare them explicitly as in the following example:

Example 7.32.

declare trait Col denCust oner /1 fields will map to getters/setters code : String
bal ance : long di scount : int maxExpense : |ong

enCust oner /] fields will map to

getters/setters code

: String bal ance

: long di scount

©oint maxExpense

end

At runtime, this declaration results in an interface, which can be used to write patterns, but can
not be instantiated directly. In order to apply a trait to an object, we provide the new don keyword,
which can be used as simply as this:

Example 7.33.

when

$c : Customer()
then

CGol denCust omrer gc = don($c, Gol denCustoner.class);
end

when a core object dons a trait, a proxy class is created on the fly (one such class will be generated
lazily for each core/trait class combination). The proxy instance, which wraps the core object and
implements the trait interface, is inserted automatically and will possibly activate other rules. An
immediate advantage of declaring and using interfaces, getting the implementation proxy for free
from the engine, is that multiple inheritance hierarchies can be exploited when writing rules. The
core classes, however, need not implement any of those interfaces statically, also facilitating the
use of legacy classes as cores. In fact, any object can don a trait, provided that they are declared
as @Traitable. Notice that this annotation used to be optional, but now is mandatory.

Example 7.34.

inmport org.drools.core.factnodel .traits. Traitable;
decl are Custoner

231

Rule Language Reference

@raitable

code : String

bal ance : 1ong
end

The only connection between core classes and trait interfaces is at the proxy level: a trait is not
specifically tied to a core class. This means that the same trait can be applied to totally different
objects. For this reason, the trait does not transparently expose the fields of its core object. So,
when writing a rule using a trait interface, only the fields of the interface will be available, as usual.
However, any field in the interface that corresponds to a core object field, will be mapped by the
proxy class:

Example 7.35.
when
$o: Oderltem($p : price, $code : custCode)
$c: Gol denCust oner (code == $code, $a : bal ance, $d: discount)
t hen
$c. set Bal ance($a - $p*$d);
end

In this case, the code and balance would be read from the underlying Customer object. Likewise,
the setAccount will modify the underlying object, preserving a strongly typed access to the data
structures. A hard field must have the same name and type both in the core class and all donned
interfaces. The name is used to establish the mapping: if two fields have the same name, then they
must also have the same declared type. The annotation @org.drools.core.factmodel.traits.Alias
allows to relax this restriction. If an @Alias is provided, its value string will be used to resolve
mappings instead of the original field name. @Alias can be applied both to traits and core beans.

Example 7.36.

inmport org.drools.core.factnodel .traits.*
declare trait Col denCust oner

bal ance : long @\ ias("org.acne.foo.accountBal ance")
end

decl are Person

@raitable
name : String
savings : long @\ ias("org.acne.foo.accountBal ance")
end
when
Gol denCust onmer (bal ance > 1000) // wll react to new Person(2000)
then
end

232

Rule Language Reference

More work is being done on reaxing this constraint (see the experimental section on "logical"
traits later). Now, one might wonder what happens when a core class does NOT provide the
implementation for a field defined in an interface. We call hard fields those trait fields which are also
core fields and thus readily available, while we define soft those fields which are NOT provided
by the core class. Hidden fields, instead, are fields in the core class not exposed by the interface.

So, while hard field management is intuitive, there remains the problem of soft and hidden fields.
Hidden fields are normally only accessible using the core class directly. However, the "fields" Map
can be used on a trait interface to access a hidden field. If the field can't be resolved, null will be
returned. Notice that this feature is likely to change in the future.

Example 7.37.

when

$sc : Col denCustomer(fields["age"] > 18) // age is declared by the underlying core
class, but not by Gol denCust oner
t hen

Soft fields, instead, are stored in a Map-like data structure that is specific to each core object
and referenced by the proxy(es), so that they are effectively shared even when an object dons
multiple traits.

Example 7.38.

when
$sc : Col denCustoner($c : code, // hard getter
$maxExpense : maxExpense > 1000 // soft getter

)
then

$sc.setDiscount(...); // soft setter
end

A core object also holds a reference to all its proxies, so that it is possible to track which type(s)
have been added to an object, using a sort of dynamic "instanceof" operator, which we called isA.
The operator can accept a String, a class literal or a list of class literals. In the latter case, the
constraint is satisfied only if all the traits have been donned.

Example 7.39.

$sc : Col denCustoner ($maxExpense : maxExpense > 1000, this isA
"Seni orCustoner", this isA [National Custoner.class, OnlineCustoner.class])

maxExpense > 1000, this isA "SeniorCustoner",

this isA

[

233

Rule Language Reference

Eventually, the business logic may require that a trait is removed from a wrapped object. To this
end, we provide two options. The first is a "logical don", which will result in a logical insertion of
the proxy resulting from the traiting operation. The TMS will ensure that the trait is removed when
its logical support is removed in the first place.

Example 7.40.

t hen
don($x, // core object
Custoner.class, // trait class
true // optional flag for |ogical insertion

The second is the use of the "shed" keyword, which causes the removal of any type that is a
subtype (or equivalent) of the one passed as an argument. Notice that, as of version 5.5, shed
would only allow to remove a single specific trait.

Example 7.41.

then
Thing t = shed($x, ColdenCustoner.class) // also renpbves any trait that

This operation returns another proxy implementing the org.drools.core.factmodel.traits. Thing in-
terface, where the getFields() and getCore() methods are defined. Internally, in fact, all declared
traits are generated to extend this interface (in addition to any others specified). This allows to
preserve the wrapper with the soft fields which would otherwise be lost.

A trait and its proxies are also correlated in another way. Starting from version 5.6, whenever
a core object is "modified", its proxies are "modified" automatically as well, to allow trait-based
patterns to react to potential changes in hard fields. Likewise, whenever a trait proxy (mached by
a trait pattern) is modified, the modification is propagated to the core class and the other traits.
Morover, whenever a don operation is performed, the core object is also modified automatically,
to reevaluate any "isA" operation which may be triggered.

Potentially, this may result in a high number of modifications, impacting performance (and cor-
rectness) heavily. So two solutions are currently implemented. First, whenever a core object is
modified, only the most specific traits (in the sense of inheritance between trait interfaces) are
updated and an internal blocking mechanism is in place to ensure that each potentially matching
pattern is evaluated once and only once. So, in the following situation:

decl are trait Gol denCustoner end
declare trait National Gol denust oner extends Gol denCustoner end
decl are trait Senior Gol denCust oner extends CGol denCust omer end

234

Rule Language Reference

a modification of an object that is both a GoldenCustomer, a NationalGoldenCustomer and a Se-
niorGoldenCustomer wold cause only the latter two proxies to be actually modified. The first would
match any pattern for GoldenCustomer and NationalGoldenCustomer; the latter would instead
be prevented from rematching GoldenCustomer, but would be allowed to match SeniorGolden-
Customer patterns. It is not necessary, instead, to modify the GoldenCustomer proxy since it is
already covered by at least one other more specific trait.

The second method, up to the usr, is to mark traits as @PropertyReactive. Property reactivity is
trait-enabled and takes into account the trait field mappings, so to block unnecessary propaga-
tions.

7.7.8.1. Cascading traits

WARNING : This feature is extremely experimental and subject to changes

Normally, a hard field must be exposed with its original type by all traits donned by an object, to
prevent situations such as

Example 7.42.

declare Person @raitable nane : String id: String
son

@raitable nane :

String id:

end

declare trait Custoner
id: String
end

declare trait Patient
id: long // Person can't don Patient, or an exception will be thrown
end

Should a Person don both Customer and Patient, the type of the hard field id would be ambiguous.
However, consider the following example, where GoldenCustomers refer their best friends so that
they become Customers as well:

Example 7.43.

decl are Person @raitable(logical=true) bestFriend : Person
son @raitable(|ogical=true

) bestFriend :

end

declare trait Custoner end

declare trait Col denCustoner extends Custoner
refers : Custoner @\ ias("bestFriend")

235

Rule Language Reference

end

Aside from the @Alias, a Person-as-GoldenCustomer's best friend might be compatible with the
requirements of the trait GoldenCustomer, provided that they are some kind of Customer them-
selves. Marking a Person as "logically traitable" - i.e. adding the annotation @Traitable(logical =
true) - will instruct the engine to try and preserve the logical consistency rather than throwing an
exception due to a hard field with different type declarations (Person vs Customer). The following
operations would then work:

Example 7.44.
Person pl = new Person();Person p2 = new Person();pl.setBestFriend(p2);...Customer
c2 = don(p2, Cust oner. cl ass);...Col denCust oner gcl = don(pl,
CGol denCustomer.class);...pl.getBestFriend(); // returns p2gcl.getRefers(); // returns c2, a

Cust omer proxy w apping p2
Person(); Person p2 = new
Person(); pl. set Best Fri end(p2

);...Customer c2 = don(p2, Custoner.class
);...Gol denCustomer gcl = don(pl, Col denCustoner.cl ass

);...pl.getBestFriend(); // returns
p2gcl. getRefers(); // returns c2, a Custoner proxy w apping

Notice that, by the time p1 becomes GoldenCustomer, p2 must have already become a Customer
themselves, otherwise a runtime exception will be thrown since the very definition of GoldenCus-
tomer would have been violated.

In some cases, however, one might want to infer, rather than verify, that p2 is a Customer by virtue
that pl is a GoldenCustomer. This modality can be enabled by marking Customer as "logical",
using the annotation @org.drools.core.factmodel.traits. Trait(logical = true). In this case, should
p2 not be a Customer by the time that p1 becomes a GoldenCustomer, it will be automatically don
the trait Customer to preserve the logical integrity of the system.

Notice that the annotation on the core class enables the dynamic type management for its fields,
whereas the annotation on the traits determines whether they will be enforced as integrity con-
straints or cascaded dynamically.

Example 7.45.

inmport org.drools.factnodel.traits.*;

declare trait Custoner
@rait(logical = true)
end

236

Rule Language Reference

7.8. Rule

O
‘ATl) e]_)

o
!

(::

o LHS |

Figure 7.9. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side
(LHS), then do what queryis specified as a list of actions in the Right Hand Side (RHS). A common
question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"
is normally part of a procedural execution flow, where, at a specific point in time, a condition is
to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific
evaluation sequence or point in time, but that it happens continually, at any time during the life
time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same
DRL it produces an error while loading. If you add a DRL that includes a rule name already in the
package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be
enclosed in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows
the t hen keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules
cannot be nested.

237

Rule Language Reference

Example 7.46. Rule Syntax Overview

rul e "<nane>"
<attri but e>*

when

<condi tional el enent>*
t hen

<acti on>*
end

Example 7.47. A simple rule

rule "Approve if not rejected" salience -100 agenda- group "approval " when not
Rej ection() p : Policy(approved == fal se, policyState:status) exists Driver(age >
25) Process(status == policyState) t hen | og(" APPROVED: due to no objections.")

p. set Approved(true);end
rejected" salience
- 100 agenda-
group “"approval "

when not

Rej ection() p : Policy(approved ==
fal se, policyState: status) exists Driver(age
> 25) Process(st at us
== policyState)

t hen | og(" APPROVED: due to no

obj ections.");

7.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite
simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools
you should make sure you have a proper understanding of each attribute.

238

Rule Language Reference

() 'no-loop’ value

—{ 'lock-on-active’ |——
—{ ‘agenda-group’ | —
o ‘audfocus’ |
— “ruleflow-group” |
—y ‘activation-group’ }—
— ‘dialect |
— 'date-effective’ ||
—{ ‘date-expires’ |
— ‘enabled’ |~
—.[“duration”]—.[duration-value (ms)]—

Figure 7.10. rule attributes

no- | oop
default value: f al se

type: Boolean

When a rule's consequence modifies a fact it may cause the rule to activate again, causing

an infinite loop. Setting no-loop to true will skip the creation of another Activation for the rule
with the current set of facts.

rul ef | ow group
default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that
are assembled by the same ruleflow-group identifier fire only when their group is active.

239

Rule Language Reference

| ock-on-active
default value: f al se

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule
within that group that has lock-on-active set to true will not be activated any more; irrespective
of the origin of the update, the activation of a matching rule is discarded. This is a stronger
version of no-loop, because the change could now be caused not only by the rule itself. It's
ideal for calculation rules where you have a number of rules that modify a fact and you don't
want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or
the agenda-group loses the focus those rules with lock-on-active set to true become eligible
again for their activations to be placed onto the agenda.

sal i ence
default value: 0

type: integer

Each rule has an integer salience attribute which defaults to zero and can be negative or
positive. Salience is a form of priority where rules with higher salience values are given higher
priority when ordered in the Activation queue.

Drools also supports dynamic salience where you can use an expression involving bound
variables.

Example 7.48. Dynamic Salience

rule "Fire in rank order 1,2,.." sal i ence(-$rank) when El enent ($rank :
rank,...) t hen ...end

1,2,.." sal i ence(-$rank

)

when El ement ($rank : rank,...

)

then

agenda- gr oup
default value: MAIN

type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only
rules in the agenda group that has acquired the focus are allowed to fire.

aut o-f ocus
default value: f al se

type: Boolean

240

Rule Language Reference

When a rule is activated where the aut o- f ocus value is true and the rule's agenda group
does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activati on-group
default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will
only fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all
pending activations of all rules in the group, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear
people mention Xor group; just swap that term in your mind with activation-group.

di al ect
default value: as specified by the package

type: String
possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS
code block. Currently two dialects are available, Java and MVEL. While the dialect can be
specified at the package level, this attribute allows the package definition to be overridden
for arule.

date-effective
default value: N/A

type: String, containing a date and time definition
A rule can only activate if the current date and time is after date-effective attribute.

dat e- expires
default value: N/A

type: String, containing a date and time definition
A rule cannot activate if the current date and time is after the date-expires attribute.

duration
default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

Example 7.49. Some attribute examples

rule "ny rule"

241

Rule Language Reference

sal i ence 42
agenda- group "nunber 1"
when ...

7.8.2. Timers and Calendars

Rules now support both interval and cron based timers, which replace the now deprecated duration
attribute.

Example 7.50. Sample timer attribute uses

timer (int: <initial delay> <repeat interval >?)
tinmer (int: 30s)
timer (int: 30s 5m)

timer (cron: <cron expression>)
timer (cron:* 0/15 * * * ?2)

Interval (indicated by "int:") timers follow the semantics of java.util. Timer objects, with an initial
delay and an optional repeat interval. Cron (indicated by "cron:") timers follow standard Unix cron
expressions:

Example 7.51. A Cron Example

rule "Send SMS every 15 m nutes"”
timer (cron:* 0/15 * * * ?2)

when

$a : Alarn(on == true)
t hen

channel s["sns"].insert(new Sns($a. nobi |l eNunber, "The alarmis still on");
end

A rule controlled by a timer becomes active when it matches, and once for each individual match.
Its consequence is executed repeatedly, according to the timer's settings. This stops as soon as
the condition doesn't match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the
Engine remains reactive to any changes made to the Working Memory. For instance, removing
a fact that was involved in triggering the timer rule's execution causes the repeated execution to
terminate, or inserting a fact so that some rule matches will cause that rule to fire. But the Engine
is not continually active, only after a rule fires, for whatever reason. Thus, reactions to an insertion
done asynchronously will not happen until the next execution of a timer-controlled rule. Disposing
a session puts an end to all timer activity.

Conversely when the rule engine runs in passive mode (i.e.: using fireAllRules instead of fireUntil-
Halt) by default it doesn't fire consequences of timed rules unless fireAllRules isn't invoked again.

242

Rule Language Reference

However it is possible to change this default behavior by configuring the KieSession with a Ti me-
dRul eExect i onQpt i on as shown in the following example.

Example 7.52. Configuring a KieSession to automatically execute timed
rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfiguration();
ksconf . set Opti on(Ti nedRul eExecti onOption. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 7.53. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
conf.set Option(new Ti medRul eExecti onOpti on. FI LTERED(new Ti medRul eExecutionFilter() {
public bool ean accept (Rule[] rules) {
return rul es[0].get Nane(). equal s("M/Rul e");

}
IDEDF

For what regards interval timers it is also possible to define both the delay and interval as an
expression instead of a fixed value. To do that it is necessary to use an expression timer (indicated
by "expr:") as in the following example:

Example 7.54. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rul e "Expression tinmer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
then
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

243

Rule Language Reference

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 7.55. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN 2010, end=5-JAN-2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of repeti-
tions allowed by the timer. If both the end and the repeat-limit parameters are set the timer will
stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't be
scheduled immediately but will preserve the phase defined by the timer and so it will be scheduled
for the first time 30 seconds after the midnight. If for some reason the system is paused (e.qg.
the session is serialized and then deserialized after a while) the rule will be scheduled only once
to recover from missing activations (regardless of how many activations we missed) and subse-
quently it will be scheduled again in phase with the timer.

Calendars are used to control when rules can fire. The Calendar API is modelled on Quartz [http://
www.quartz-scheduler.org/]:

244

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Rule Language Reference

Example 7.56. Adapting a Quartz Calendar
Cal endar weekDayCal = QuartzHel per. quart zCal endar Adapt er (org. quartz. Cal endar quartzCal)

Calendars are registered with the KieSession:

Example 7.57. Registering a Calendar

ksessi on. get Cal endars().set("weekday", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule attribute
"calendars" may contain one or more comma-separated calendar names written as string literals.

Example 7.58. Using Calendars and Timers together

rul e "weekdays are high priority"
cal endars "weekday"
timer (int:0 1h)
when
Al arn()
then
send("priority high - we have an alarnt);
end

rule "weekend are low priority"
cal endars "weekend"
timer (int:0 4h)

when

Al ar ()
t hen

send("priority low - we have an alarnt);
end

7.8.3. Left Hand Side (when) syntax

7.8.3.1. What is the Left Hand Side?

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero
or more Conditional Elements. If the LHS is empty, it will be considered as a condition element
that is always true and it will be activated once, when a new WorkingMemory session is created.

O { c-:-.rrﬂ'ﬁra'c'n;fEn'ement _]—"l O

Figure 7.11. Left Hand Side

245

Rule Language Reference

Example 7.59. Rule without a Conditional Element

rule "no CEs"

when
/Il enpty
t hen
// actions (executed once)
end

/1 The above rule is internally rewitten as

rule "eval (true)"

when
eval (true)
t hen
/1 actions (executed once)
end

Conditional elements work on one or more patterns (which are described below). The most com-
mon conditional element is "and" . Therefore it is implicit when you have multiple patterns in the
LHS of a rule that are not connected in any way:

Example 7.60. Implicit and

rule "2 unconnected patterns"when Patternl() Pattern2()then ... Il actionsend// The
above rule is internally rewitten as:rule "2 and connected patterns"when Patterni()

and Pattern2()then ... Il actionsend
ed

pat t er ns"when
Patternil()

Pattern2()then

/'l actionsend// The above rule is internally
rewitten as:rule "2 and

connected patterns”"when
Patternil()

and Pattern2()then

Note

An "and" cannot have a leading declaration binding (unlike for example or). This
is obvious, since a declaration can only reference a single fact at a time, and when

246

Rule Language Reference

the "and" is satisfied it matches both facts - so which fact would the declaration

bind to?
/1 Conpile error$person : (Person(name == "Roneo") and Person(nanme == "Juliet"))
error$person : (Person(nane == "Roneo") and Person(nane ==

7.8.3.2. Pattern (conditional element)

7.8.3.2.1. What is a pattern?

A pattern element is the most important Conditional Element. It can potentially match on each fact
that is inserted in the working memory.

A pattern contains of zero or more constraints and has an optional pattern binding. The railroad
diagram below shows the syntax for this.

O o e S) i O G S

Figure 7.12. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In
the following case the type is Cheese, which means that the pattern will match against all Per son
objects in the Working Memory:

Per son()

The type need not be the actual class of some fact object. Patterns may refer to superclasses or
even interfaces, thereby potentially matching facts from many different classes.

Obj ect() // matches all objects in the working menory

Inside of the pattern parenthesis is where all the action happens: it defines the constraints for that
pattern. For example, with a age related constraint:

Person(age == 100)

247

Rule Language Reference

@ Note
For backwards compatibility reasons it's allowed to suffix patterns with the ; char-
acter. But it is not recommended to do that.

7.8.3.2.2. Pattern binding

For referring to the matched object, use a pattern binding variable such as $p.

Example 7.61. Pattern with a binding variable

rule ...
when
$p : Person()
then
Systemout.println("Person " + $p)
end

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields, but it is not mandatory.

7.8.3.3. Constraint (part of a pattern)

7.8.3.3.1. What is a constraint?

A constraint is an expression that returns t r ue or f al se. This example has a constraint that states
5 is smaller than 6:

Person(5 <6) // just an exanple, as constraints like this would be useless in a real pattern

In essence, it's a Java expression with some enhancements (such as property access) and a few
differences (such as equal s() semantics for ==). Let's take a deeper look.

7.8.3.3.2. Property access on Java Beans (POJO's)

Any bean property can be used directly. A bean property is exposed using a standard Java bean
getter: a method get MyProperty() (ori sMyProperty() for a primitive boolean) which takes no
arguments and return something. For example: the age property is written as age in DRL instead
of the getter get Age() :

Person(age == 50)// this is the sane as: Person(getAge() == 50)

)// this is the sanme
as: Person(getAge() == 50

248

Rule Language Reference

Drools uses the standard JDK I nt r ospect or class to do this mapping, so it follows the standard
Java bean specification.

a

Note

We recommend using property access (age) over using getters explicitly
(get Age()) because of performance enhancements through field indexing.

Warning

Property accessors must not change the state of the object in a way that may
effect the rules. Remember that the rule engine effectively caches the results of its
matching in between invocations to make it faster.

To solve this latter case, insert a fact that wraps the current date into working
memory and update that fact between fireAl | Rul es as needed.

Note

The following fallback applies: if the getter of a property cannot be found, the com-
piler will resort to using the property name as a method name and without argu-
ments:

Person(age == 50)// |f Person.getAge() does not exists, this falls back
to: Person(age() == 50)

)/ 1 1f Person.get Age() does not exists, this falls back
to: Person(age() == 50

Nested property access is also supported:

249

Rule Language Reference

Person(address. houseNunber == 50)// this is the sane as: Person(get Address(). get HouseNunber ()
== 50)

)// this is the sane
as: Person(get Address(). get HouseNunber () == 50

Nested properties are also indexed.

Warning

In a stateful session, care should be taken when using nested accessors as the
Working Memory is not aware of any of the nested values, and does not know when
they change. Either consider them immutable while any of their parent references
are inserted into the Working Memory. Or, instead, if you wish to modify a nested
value you should mark all of the outer facts as updated. In the above example,
when the houseNunber changes, any Per son with that Addr ess must be marked
as updated.

7.8.3.3.3. Java expression

You can use any Java expression that returns a bool ean as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property
access:

Person(age == 50)

It is possible to change the evaluation priority by using parentheses, as in any logic or mathemat-
ical expression:

Person(age > 100 && (age % 10 == 0))

It is possible to reuse Java methods:

Person(Math.round(weight / (height * height)) < 25.0)

Warning

As for property accessors, methods must not change the state of the object in a
way that may affect the rules. Any method executed on a fact in the LHS should
be a read only method.

250

Rule Language Reference

A Warning

The state of a fact should not change between rule invocations (unless those facts

are marked as updated to the working memory on every change):

Normal Java operator precedence applies, see the operator precedence list below.

Important

All operators have normal Java semantics except for == and ! =.

The == operator has null-safe equal s() semantics:

The ! = operator has null-safe ! equal s() semantics:

Type coercion is always attempted if the field and the value are of different types; exceptions will
be thrown if a bad coercion is attempted. For instance, if "ten" is provided as a string in a numeric
evaluator, an exception is thrown, whereas "10" would coerce to a numeric 10. Coercion is always
in favor of the field type and not the value type:

Person(age == "10") // "10" is coerced to 10

251

Rule Language Reference

7.8.3.3.4. Comma separated AND

The comma character (', ') is used to separate constraint groups. It has implicit AND connective
semantics.

/1 Person is at |least 50 and wei ghs at |east 80 kgPerson(age > 50, weight > 80)
kgPerson(age > 50, weight > 80

/1 Person is at least 50, weighs at least 80 kg and is taller than 2 neter.Person(age > 50,
wei ght > 80, height > 2)
meter. Person(age > 50, weight > 80, height > 2

The comma (,) operator cannot be embedded in a composite constraint expression, such as
parentheses:

Person((age > 50, weight > 80) || height > 2) // Do NOT do this: conpile error// Use this
i nst eadPerson((age > 50 & weight > 80) || height > 2)

error// Use
this insteadPerson((age > 50 &% weight > 80) || height >

7.8.3.3.5. Binding variables

A property can be bound to a variable:

/1 2 persons of the sane agePerson($firstAge : age) // bindingPerson(age == $firstAge) //
constraint expression

agePerson($firstAge : age) //

bi ndi ngPer son(age == $firstAge) // constraint

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields.

252

Rule Language Reference

/1 Not recommendedPerson($age
ommendedPer son($age

: age * 2 < 100)
age * 2 <

/| Recommended (separates bindings and constraint expressions)Person(age * 2 <
100, $age : age)
and constraint expressions)Person(age * 2 <

Bound variable restrictions using the operator == provide for very fast execution as it use hash
indexing to improve performance.

7.8.3.3.6. Unification

Drools does not allow bindings to the same declaration. However this is an important aspect to
derivation query unification. While positional arguments are always processed with unification
a special unification symbol, :=', was introduced for named arguments named arguments. The
following "unifies" the age argument across two people.

Person($age := age) Person($age := age)
Person($age := age)

In essence unification will declare a binding for the first occurrence and constrain to the same
value of the bound field for sequence occurrences.

7.8.3.3.7. Grouped accessors for nested objects

Often it happens that it is necessary to access multiple properties of a nested object as in the
following example

Person(name == "nark", address.city == "london", address.country == "uk")

These accessors to nested objects can be grouped with a '.(...)' syntax providing more readable
rules as in

Person(name== "nark", address.(city == "london", country == "uk"))

253

Rule Language Reference

Note the "." prefix, this is necessary to differentiate the nested object constraints from a method call.
7.8.3.3.8. Inline casts and coercion

When dealing with nested objects, it also quite common the need to cast to a subtype. Itis possible
to do that via the # symbol as in:

Person(nane=="mark", address#LongAddress.country == "uk")

This example casts Address to LongAddress, making its getters available. If the cast is not possible
(instanceof returns false), the evaluation will be considered false. Also fully qualified names are
supported:

Person(nane=="mark", address#org. donai n. LongAddr ess. country == "uk")

It is possible to use multiple inline casts in the same expression:

Person(nane == "nmark", address#LongAddress. country#Det ai |l edCountry. popul ati on > 10000000)

moreover, since we also support the instanceof operator, if that is used we will infer its results for
further uses of that field, within that pattern:

Person(nane=="mark", address instanceof LongAddress, address.country == "uk")

7.8.3.3.9. Special literal support
Besides normal Java literals (including Java 5 enums), this literal is also supported:
7.8.3.3.9.1. Date literal

The date format dd- mmm yyyy is supported by default. You can customize this by providing an
alternative date format mask as the System property named dr ool s. dat ef or mat . If more control
is required, use a restriction.

Example 7.62. Date Literal Restriction

Cheese(bestBefore < "27-Cct-2009")

7.8.3.3.10. List and Map access

It's possible to directly access a Li st value by index:

254

Rule Language Reference

/1 Same as childList(0).getAge() == 18
Person(childList[0].age == 18)

It's also possible to directly access a Map value by key:

/1 Same as credential Map.get("jsmth").isValid()
Person(credential Map["jsmith"].valid)

7.8.3.3.11. Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives &&
or | | . Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

|—-[restriclion
O— =
|'-—|‘>I:rESfrﬁL‘HﬂﬂGrﬂup]—'—“’

Figure 7.13. Abbreviated combined relation condition

(O « | muttiRestriction }—{ v |—+{")

Figure 7.14. Abbreviated combined relation condition with parentheses

/1 Sinple abbreviated conbined relation condition using a single &Person(age > 30 & < 40)
dition using a single &Person(age

/1 Conpl ex abbreviated conbined relation using groupi ngsPerson(age ((> 30 && < 40) ||
(> 20 && < 25)))

rel ati on usi ng groupi ngsPerson(age ((>

30 && < 40) || (> 20

/1 M xing abbreviated conbined relation with constraint connectivesPerson(age > 30 && < 40
|| location == "london")
lation with constraint connectivesPerson(age > 30 && <

255

Rule Language Reference

7.8.3.3.12. Special DRL operators

| 'e=' | ' | ==t | ==t | 1= | 'contains' | 'not contains' |
‘memberct | ‘mot membercf’ | ‘'matches” | “not matches'

Figure 7.15. Operators

Coercion to the correct value for the evaluator and the field will be attempted.
7.8.3.3.12.1. The operators < <= > >=

These operators can be used on properties with natural ordering. For example, for Date fields, <
means before, for St ri ng fields, it means alphabetically lower.

Person(firstName < $ot herFirst Nane)

Person(birthDate < $otherBirthDate)

Only applies on Conpar abl e properties.
7.8.3.3.12.2. Null-safe dereferencing operator

The !. operator allows to derefencing in a null-safe way. More in details the matching algorithm
requires the value to the left of the !. operator to be not null in order to give a positive result for
pattern matching itself. In other words the pattern:

Person($streetNane : address!.street)

will be internally translated in:

Person(address != null, $streetNane : address.street)

7.8.3.3.12.3. The operator nat ches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,
but variables that resolve to a valid regexp are also allowed.

Example 7.63. Regular Expression Constraint

Cheese(type matches "(Buffal o) ?\\ S*Mozarella")

256

Rule Language Reference

@ Note
Like in Java, regular expressions written as string literals need to escape '\ ".

Only applies on St ri ng properties. Using mat ches against anul | value always evaluates to false.
7.8.3.3.12.4. The operator not mat ches

The operator returns true if the String does not match the regular expression. The same rules
apply as for the mat ches operator. Example:

Example 7.64. Regular Expression Constraint
Cheese(type not natches "(Buffulo)?\\S*Mzarella")

Only applies on St ri ng properties. Using not mat ches against a nul | value always evaluates
to true.

7.8.3.3.12.5. The operator cont ai ns

The operator cont ai ns is used to check whether a field that is a Collection or elements contains
the specified value.

Example 7.65. Contains with Collections

CheeseCount er (cheeses cont ai ns "stilton") /1 contains wth a String liter
al CheeseCount er (cheeses contains $var) // contains with a variable
String literal CheeseCounter(cheeses contains $var) // contains

Only applies on Col | ect i on properties.
7.8.3.3.12.6. The operator not contai ns

The operator not cont ai ns is used to check whether a field that is a Collection or elements does
not contain the specified value.

Example 7.66. Literal Constraint with Collections

CheeseCounter(cheeses not contains "cheddar") // not contains with a String liter
al CheeseCount er (cheeses not contains $var) // not contains with a variable
String literal CheeseCounter(cheeses not contains $var) // not contains

Only applies on Col | ect i on properties.

257

Rule Language Reference

@ Note
For backward compatibility, the excl udes operator is supported
as a synonym for not cont ai ns.

7.8.3.3.12.7. The operator menber O

The operator nember O is used to check whether a field is a member of a collection or elements;
that collection must be a variable.

Example 7.67. Literal Constraint with Collections
CheeseCount er (cheese menber OF $nat ur eCheeses)

7.8.3.3.12.8. The operator not menber O

The operator not nmenber O is used to check whether a field is not a member of a collection or
elements; that collection must be a variable.

Example 7.68. Literal Constraint with Collections

CheeseCount er (cheese not nenber Of $mat ur eCheeses)

7.8.3.3.12.9. The operator soundsl i ke

This operator is similar to mat ches, but it checks whether a word has almost the same sound
(using English pronunciation) as the given value. This is based on the Soundex algorithm (see
http://en.wi ki pedi a. or g/ w ki / Soundex).

Example 7.69. Test with soundslike

/1 match cheese "fubar" or "foobar"Cheese(nane soundslike 'foobar')
bar" Cheese(nanme soundsli ke 'foobar'

7.8.3.3.12.10. The operator str

This operator str is used to check whether a field that is a Stri ng starts with or ends with a
certain value. It can also be used to check the length of the String.

Message(routingValue str[startsWth] "R1")

258

Rule Language Reference

Message(routingVal ue str[endsWth] "R2")

Message(routingValue str[length] 17)

7.8.3.3.12.11. The operators i n and not in (compound value restriction)

The compound value restriction is used where there is more than one possible value to match.
Currently only the i n and not i n evaluators support this. The second operand of this operator
must be a comma-separated list of values, enclosed in parentheses. Values may be given as
variables, literals, return values or qualified identifiers. Both evaluators are actually syntactic sugar,
internally rewritten as a list of multiple restrictions using the operators ! = and ==.

I' ; | s @

| qualifisdidentifier | -'

-D[qualifiedidentifier J—-_—f

¥

Figure 7.16. compoundValueRestriction

Example 7.70. Compound Restriction using "in"

Person($cheese : favouriteCheese)Cheese(type in ("stilton", "cheddar", $cheese))
) Cheese(type in ("stilton", "cheddar", $cheese)

7.8.3.3.13. Inline eval operator (deprecated)

‘aval(’ BXpression T

Figure 7.17. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the
current or previous pattern, can be used; autovivification is also used to auto-create field binding
variables. When an identifier is found that is not a current variable, the builder looks to see if the

259

Rule Language Reference

identifier is a field on the current object type, if it is, the field binding is auto-created as a variable
of the same name. This is called autovivification of field variables inside of inline eval's.

This example will find all male-female pairs where the male is 2 years older than the female; the
variable age is auto-created in the second pattern by the autovivification process.

Example 7.71. Return Value operator

Person(girl Age : age, sex = "F')Person(eval(age == girlAge + 2), sex ='M) [/ eval()
is actually obsolete in this exanple
)Person(eval (age == girlAge + 2), sex ='M) // eval() is actually obsolete in this

@ Note
Inline eval's are effectively obsolete as their inner syntax is now directly supported.
It's recommended not to use them. Simply write the expression without wrapping
eval() around it.

7.8.3.3.14. Operator precedence

The operators are evaluated in this precedence:

Table 7.1. Operator precedence

Operator type Operators Notes
(nested / null safe) property | . !. Not normal Java semantics
access
List/Map access [1 Not normal Java semantics
constraint binding : Not normal Java semantics
multiplicative *| %
additive +-
shift << >> >>>
relational <> <=>=instanceof
equality === Does not use normal Java (not)

same semantics: uses (not)
equals semantics instead.

non-short circuiting AND &

non-short circuiting exclusive | »
OR

non-short circuiting inclusive
OR

260

Rule Language Reference

Operator type Operators Notes
logical AND &&
logical OR |
ternary ?
Comma separated AND , Not normal Java semantics

7.8.3.4. Positional Arguments

Patterns now support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).
The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese name : String shop : String price : intend
Cheese nane :

String shop :

String price :

int

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to differen-
tiate the positional section from the named argument section. Variables and literals and expres-
sions using just literals are supported in positional arguments, but not variables. Positional argu-
ments are always resolved using unification.

Cheese("stilton", " Cheese Shop", p;) Cheese("stilton", " Cheese Shop"; p
price)Cheese("stilton"; shop == "Cheese Shop", p : price)Cheese(nane == "stilton"; shop
== "Cheese Shop", p : price)

) Cheese("stilton", "Cheese Shop"; p : price

) Cheese("stilton"; shop == "Cheese Shop", p : price

) Cheese(name == "stilton"; shop == "Cheese Shop", p : price

Positional arguments that are given a previously declared binding will constrain against that using
unification; these are referred to as input arguments. If the binding does not yet exist, it will create
the declaration binding it to the field represented by the position argument; these are referred to
as output arguments.

7.8.3.5. Fine grained property change listeners

When you call modify() (see the modify statement section) on a given object it will trigger a reval-
uation of all patterns of the matching object type in the knowledge base. This can can lead to un-

261

Rule Language Reference

wanted and useless evaluations and in the worst cases to infinite recursions. The only workaround
to avoid it was to split up your objects into smaller ones having a 1 to 1 relationship with the
original object.

This feature allows the pattern matching to only react to modification of properties actually con-
strained or bound inside of a given pattern. That will help with performance and recursion and
avoid artificial object splitting.

By default this feature is off in order to make the behavior of the rule engine backward compatible
with the former releases. When you want to activate it on a specific bean you have to annotate it
with @propertyReactive. This annotation works both on DRL type declarations:

decl are Person@ropertyReactive firstName : String last Nane : Stringend
Per
son@r opertyReacti ve firstName :

String | ast Name :

and on Java classes:

@ropertyReactive public static class Person { private String firstNang; private
String | ast Nane; }

ertyReactive public static class

Person { private

String firstNane; private

In this way, for instance, if you have a rule like the following:

rule "Every person named Mario is a male" when $person : Person(firstName == "Mario")then
nmodi fy ($person) { setMale(true) }end
when $person : Person(firstName == "Mario"

)
t hen nmodi fy ($person) { setMale(true)

}

you won't have to add the no-loop attribute to it in order to avoid an infinite recursion because the
engine recognizes that the pattern matching is done on the ‘firstName' property while the RHS of
the rule modifies the 'male’ one. Note that this feature does not work for update(), and this is one of
the reasons why we promote modify() since it encapsulates the field changes within the statement.
Moreover, on Java classes, you can also annotate any method to say that its invocation actually
modifies other properties. For instance in the former Person class you could have a method like:

@nbdifies({ "firstNanme", "lastNanme" })public void setNane(String nane) { String[] names =
nanme.split("\\s"); this.firstNane = nanes[O0]; this.lastNane = nanmes[1];}
})public void setName(String

262

Rule Language Reference

nane) { String[] names
= nane.split("\\s"); this.firstName
= nanes[0] ; t his. | ast Name

That means that if a rule has a RHS like the following:

nodi fy($person) { setNane("Mario Fusco") }

it will correctly recognize that the values of both properties ‘firstName' and 'lastName' could have
potentially been modified and act accordingly, not missing of reevaluating the patterns constrained
on them. At the moment the usage of @Modifies is not allowed on fields but only on methods.
This is coherent with the most common scenario where the @Modifies will be used for meth-
ods that are not related with a class field as in the Person.setName() in the former example. Al-
so note that @Modifies is not transitive, meaning that if another method internally invokes the
Person.setName() one it won't be enough to annotate it with @Modifies({ "name" }), but it is
necessary to use @Modifies({ "firstName", "lastName" }) even on it. Very likely @Modifies tran-
sitivity will be implemented in the next release.

For what regards nested accessors, the engine will be notified only for top level fields. In other
words a pattern matching like:

Person (address.city.nane == "London)

will be revaluated only for modification of the 'address' property of a Person object. In the same
way the constraints analysis is currently strictly limited to what there is inside a pattern. Another
example could help to clarify this. An LHS like the following:

$p : Person()Car(owner = $p.nane)
) Car (owner = $p. nane

will not listen on modifications of the person's name, while this one will do:

Person($name : name)Car(owner = $nane)
) Car (owner = $nane

To overcome this problem it is possible to annotate a pattern with @watch as it follows:

$p : Person() @watch (nane)Car(owner = $p.nane)
) Car (owner = $p. nane

263

Rule Language Reference

Indeed, annotating a pattern with @watch allows you to modify the inferred set of properties for
which that pattern will react. Note that the properties named in the @watch annotation are actually
added to the ones automatically inferred, but it is also possible to explicitly exclude one or more
of them prepending their name with a ! and to make the pattern to listen for all or none of the
properties of the type used in the pattern respectively with the wildcrds * and !'*. So, for example,
you can annotate a pattern in the LHS of a rule like:

/Il listens for changes on both firstNane (inferred) and |astNanmePerson(firstName ==
$expectedFirstNane) @watch(lastName)// listens for all the properties of the Person
beanPerson(firstNane == $expectedFirstName) @atch(*)// listens for changes on | astNane

and explicitly exclude firstNanePerson(firstNane == $expectedFirstNanme) @watch(| astNane, !
firstNane)// listens for changes on all the properties except the age onePerson(firstNane ==
$expectedFirstName) @watch(*, !age)

and | ast NamePerson(firstNane == $expect edFirstName) @watch(

lastNane)// listens for all the properties of the
Person beanPerson(firstName == $expectedFirstName) @watch(

*)/I listens for changes on | astName and explicitly
exclude firstNamePerson(firstNane == $expect edFirstNane) @atch(|astNane,

IfirstName)// listens for changes on all the properties except the
age onePerson(firstName == $expectedFirstNane) @atch(*,

Since doesn't make sense to use this annotation on a pattern using a type not annotated with
@PropertyReactive the rule compiler will raise a compilation error if you try to do so. Also the
duplicated usage of the same property in @watch (for example like in: @watch(firstName, ! first-
Name)) will end up in a compilation error. In a next release we will make the automatic detection
of the properties to be listened smarter by doing analysis even outside of the pattern.

It also possible to enable this feature by default on all the types of your model or to completely
disallow it by using on option of the KnowledgeBuilderConfiguration. In particular this new Prop-
ertySpecificOption can have one of the following 3 values:

- DISABLED => the feature is turned off and all the other related annotations are just ignored-
ALLONED => this is the default behavior: types are not property reactive unless they are not
annotated with @vropertySpecific- ALWAYS => all types are property reactive by default

tions are just ignored- ALLONED => this is the default behavior: types are not property reactive
unl ess they are

not annotated with @ropertySpecific- ALWAYS => all types are

So, for example, to have a KnowledgeBuilder generating property reactive types by default you
could do:

Knowl edgeBui | der Confi guration config =

kbui | der = Know edgeBui | der Fact ory. newknow edgeBui | der (confi g);
tion

264

Rule Language Reference

config = Know edgeBui | der Fact ory. newknow edgeBui | der Confi gurati on();

In this last case it will be possible to disable the property reactivity feature on a specific type by
annotating it with @ClassReactive.
7.8.3.6. Basic conditional elements

7.8.3.6.1. Conditional Element and

The Conditional Element "and" is used to group other Conditional Elements into a logical con-
junction. Drools supports both prefix and and infix and.

.@ ‘and’ ; -

Figure 7.18. infixAnd

Traditional infix and is supported:

/1infixAndCheese(cheeseType : type) and Person(favouriteCheese == cheeseType)
fi xAndCheese(cheeseType : type) and Person(favouriteCheese == cheeseType

Explicit grouping with parentheses is also supported:

/linfixAnd wth grouping(Cheese(cheeseType : type) and (Person(favouriteCheese ==
cheeseType) or Person(favouriteCheese == cheeseType))

groupi ng(Cheese(cheeseType : type)

and (Person(favouriteCheese == cheeseType)

or Person(favouriteCheese == cheeseType)

@ Note
The symbol && (as an alternative to and) is deprecated. But it is still supported in
the syntax for backwards compatibility.

Figure 7.19. prefixAnd

Prefix and is also supported:

265

Rule Language Reference

(and Cheese(cheeseType : type) Person(favouriteCheese == cheeseType))
) Person(favouriteCheese == cheeseType)

The root element of the LHS is an implicit prefix and and doesn't need to be specified:

Example 7.72. implicit root prefixAnd

when

Cheese(cheeseType : type)

Person(favouriteCheese == cheeseType)
then

7.8.3.6.2. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.
Drools supports both prefix or and infix or .

l,_.[pa:mamdﬁng]—~1 l-f-@'-l |"HI
O — (&) ———0

Figure 7.20. infixOr

Traditional infix or is supported:

/1infixOr Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)
fi xOr Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType

Explicit grouping with parentheses is also supported:

/1infixOr with groupi ng(Cheese(cheeseType : type) or (Person(favouriteCheese == cheeseType)

and Person(favouriteCheese == cheeseType))
groupi ng(Cheese(cheeseType : type)

or (Person(favouriteCheese == cheeseType)
and Person(favouriteCheese == cheeseType)

@ Note
The symbol | | (as an alternative to or) is deprecated. But it is still supported in
the syntax for backwards compatibility.

266

Rule Language Reference

—
OfI FI»m &m0

Figure 7.21. prefixOr

Prefix or is also supported:

(or Person(sex == "f", age > 60) Person(sex == "n{, age > 65)
) Person(sex == "n{, age > 65

The Conditional Element or also allows for optional pattern binding. This means that each resulting
subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using
eponymous variables:

pensioner : (Person(sex == "f", age > 60) or Person(sex == "ni', age > 65))
(or pensioner : Person(sex == "f", age > 60) pensi oner : Person(sex == "ni, age > 65))
) pensioner : Person(sex == "nf, age > 65

Since the conditional element or results in multiple subrule generation, one for each possible
logically outcome, the example above would result in the internal generation of two rules. These
two rules work independently within the Working Memory, which means both can match, activate
and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more
similar rules. When you think of it that way, it's clear that for a single rule there could be multiple
activations if two or more terms of the disjunction are true.

267

Rule Language Reference

7.8.3.6.3. Conditional Element not

|_. ._| AT

Figure 7.22. not

¥ 1| & k "
conditionalElermant] O

The CE not is first order logic's non-existential quantifier and checks for the non-existence of
something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not may be followed by parentheses around the CEs that it applies to. In the simplest
case of a single pattern (like below) you may optionally omit the parentheses.

Example 7.73. No Busses

not Bus()

Example 7.74. No red Busses

/'l Brackets are optional:not Bus(color == "red")// Brackets are optional:not (Bus(color ==
"red", nunber == 42))// "not" with nested infix
optional : not Bus(col or
== "red")// Brackets
are optional:not (Bus(color == "red", nunber ==
42))// "not" with nestedand - two patterns,
Il brackets are requires:
not (Bus(color == "red") and
Bus(col or == "blue"))

7.8.3.6.4. Conditional Element exi sts

m'lditlnnaIElemem] : ()

Figure 7.23. exists

The CE exi st s is first order logic's existential quantifier and checks for the existence of something
in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from
just having the pattern on its own, which is more like saying "for each one of...". If you use exi st s
with a pattern, the rule will only activate at most once, regardless of how much data there is in
working memory that matches the condition inside of the exi st s pattern. Since only the existence
matters, no bindings will be established.

268

Rule Language Reference

The keyword exi st s must be followed by parentheses around the CEs that it applies to. In the
simplest case of a single pattern (like below) you may omit the parentheses.

Example 7.75. At least one Bus

exi sts Bus()

Example 7.76. At least one red Bus

exi sts Bus(color == "red")// brackets are optional:exists (Bus(color == "red", nunber == 42))//
"exists" with nested infix
"red")// brackets are
optional :exists (Bus(color == "red", nunber == 42)
)// "exists" with nested infixand,
/1 brackets are required
exists (Bus(color == "red") and
Bus(col or == "blue"))

7.8.3.7. Advanced conditional elements

7.8.3.7.1. Conditional Element foral |

O—(Toan)—{T)— o Tt - O

Figure 7.24. forall

The Conditional Element f or al | completes the First Order Logic support in Drools. The Condi-
tional Element f oral | evaluates to true when all facts that match the first pattern match all the
remaining patterns. Example:

rule "Al'l English buses are red"when forall ($bus : Bus(type == 'english")
Bus(this == $bus, color = ‘red"))then /1 all English buses are redend

red" when forall ($bus : Bus(type ==
"english') Bus(this == $bus, color = 'red)

)then /1 all English buses are

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that
matches this pattern we evaluate the following patterns and if they match, the forall CE will eval-
uate to true.

269

Rule Language Reference

To state that all facts of a given type in the working memory must match a set of constraints,
foral |l can be written with a single pattern for simplicity. Example:

Example 7.77. Single Pattern Forall

rule "All Buses are Red"when forall (Bus(color =="'red"))then /1 all Bus facts are redend
Red"

when forall(Bus(color == "red")

)

then /1 all Bus facts are

red

Another example shows multiple patterns inside the foral | :

Example 7.78. Multi-Pattern Forall

rule "all enployees have health and dental care prograns”"when forall ($enp : Enpl oyee()
Heal t hCare(enpl oyee == $enp) Dent al Care(enpl oyee == $enp)
)then /1 all enployees have health and dental careend
care
progr ams" when forall ($enp
Enpl oyee() Heal t hCar e(enpl oyee ==
$enp) Dent al Care(enpl oyee ==
$enp)
)then /1 all enployees have health and

Forall can be nested inside other CEs. For instance, f or al I can be used inside a not CE. Note
that only single patterns have optional parentheses, so that with a nested f oral | parentheses
must be used:

Example 7.79. Combining Forall with Not CE

rule "not all enployees have health and dental care"when not (forall($enmp : Enpl oyee()
Heal t hCare(enpl oyee == $enp) Dent al Care(enpl oyee == $enp))
)then /1 not all enployees have health and dental careend
tal
car e"when not (forall($enp
Enpl oyee() Heal t hCare(enpl oyee ==
$enp) Dent al Care(enpl oyee == $enp)
)
)then /1 not all enployees have health and
dent al

As a side note, foral | (p1 p2 p3...) is equivalent to writing:

270

Rule Language Reference

not (pl and not (and p2 p3...))

Also, it is important to note that f or al | is a scope delimiter. Therefore, it can use any previously
bound variable, but no variable bound inside it will be available for use outside of it.

7.8.3.7.2. Conditional Element from

O o O

Figure 7.25. from

The Conditional Element f r omenables users to specify an arbitrary source for data to be matched
by LHS patterns. This allows the engine to reason over data not in the Working Memory. The data
source could be a sub-field on a bound variable or the results of a method call. It is a powerful
construction that allows out of the box integration with other application components and frame-
works. One common example is the integration with data retrieved on-demand from databases
using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL
syntax. Therefore, it allows you to easily use object property navigation, execute method calls and
access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zipcode"when Person($personAddress : address) Address(zi pcode ==
"23920W) from $personAddress then /1 zip code is okend

zi pcode" when Person($personAddress : address
) Address(zi pcode == "23920W) from
$per sonAddress then /1 zip code

is

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this
problem many ways. This is the same but shows how you can use a graph notation with the 'from":

rule "validate zipcode"when $p : Person() $a : Address(zipcode == "23920W) from
$p. address then /1 zip code is okend

zi pcode" when $p : Person(
) $a : Address(zipcode == "23920W) from

$p. address then /1 zip code
is

271

Rule Language Reference

Previous examples were evaluations using a single pattern. The CE fromalso support object
sources that return a collection of objects. In that case, fromwill iterate over all objects in the
collection and try to match each of them individually. For instance, if we want a rule that applies
10% discount to each item in an order, we could do:

rule "apply 10% di scount to all itens over US$ 100,00 in an order"when $order : Order()
$item : Oderlten(value > 100) from $order.itensthen // apply discount to $itenend

or der "when $or der
O der () $item : Oderlten(value > 100)
from
$order.itensthen /1 apply discount
to

The above example will cause the rule to fire once for each item whose value is greater than 100
for each given order.

You must take caution, however, when using f r om especially in conjunction with the | ock- on-
act i ve rule attribute as it may produce unexpected results. Consider the example provided earlier,
but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"rul efl ow-group "test"l ock-on-active

t ruewhen $p : Person() $a : Address(state == "NC') from $p.address then nodi fy
($p) {} // Assign person to sales region 1 in a nodify bl ockendrule "Apply a di scount to people
in the city of Raleigh"ruleflowgroup "test"lock-on-active truewhen $p : Person()

$a : Address(city == "Raleigh") from $p.address then modi fy ($p) {} // Apply discount
to person in a nodify bl ockend

regi on
1"rul ef | ow-group "test"
| ock-
on-active truewhen $p

Person() $a : Address(state == "NC')

from $p. address then modi fy ($p) {} // Assign person to sales region 1 in
a

nodi fy bl ockendrule "Apply a discount to people in the
city of

Ral ei gh"rul ef | ow-group "test"
| ock-
on-active truewhen $p

Person() $a : Address(city == "Ral ei gh")

from $p. address then nodi fy ($p) {} // Apply discount to person in
a

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive
a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only
the second rule fires.

272

Rule Language Reference

If you were to turn on the audit log, you would also see that when the second rule fires, it deac-
tivates the first rule. Since the rule attribute | ock- on- acti ve prevents a rule from creating new
activations when a set of facts change, the first rule fails to reactivate. Though the set of facts
have not changed, the use of f romreturns a new fact for all intents and purposes each time it
is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules
across different rule-flow groups. When rules modify working memory and other rules downstream
of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of nodify is
critical. You don't, however, want other rules in the same rule-flow group to place activations on
one another recursively. In this case, the no- | oop attribute is ineffective, as it would only prevent
a rule from activating itself recursively. Hence, you resort to | ock- on- acti ve.

There are several ways to address this issue:
« Avoid the use of f r omwhen you can assert all facts into working memory or use nested object
references in your constraint expressions (shown below).

« Place the variable assigned used in the modify block as the last sentence in your condition
(LHS).

« Avoid the use of | ock-on-acti ve when you can explicitly manage how rules within the same
rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of f r omwhen you can assert all your facts into working
memory directly. In the example above, both the Person and Address instance can be asserted
into working memory. In this case, because the graph is fairly simple, an even easier solution is
to modify your rules as follows:

rul e "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active

truewhen $p : Person(address.state == "NC') then nodi fy ($p) {} // Assign person to sales
region 1 in a nodify bl ockendrule "Apply a discount to people in the city of Raleigh"ruleflow
group "test"l ock-on-active truewhen $p : Person(address.city == "Raleigh") then nmodi fy
($p) {} //Apply discount to person in a nodify bl ockend

regi on

1"rul ef | ow-group "test"

| ock-

on-active truewhen $p : Person(address.state ==

" NC

) then modi fy ($p) {} // Assign person to sales region 1 in
a

nodi fy bl ockendrule "Apply a discount to people in the

city of

Ral ei gh"rul ef| ow-group "test"

| ock-

on-active truewhen $p : Person(address.city ==
"Ral ei gh"

) then nmodi fy ($p) {} //Apply discount to person in
a

273

Rule Language Reference

Now, you will find that both rules fire as expected. However, it is not always possible to access
nested facts as above. Consider an example where a Person holds one or more Addresses and
you wish to use an existential quantifier to match people with at least one address that meets
certain conditions. In this case, you would have to resort to the use of fromto reason over the
collection.

There are several ways to use f r omto achieve this and not all of them exhibit an issue with the use
of | ock- on- act i ve. For example, the following use of f r omcauses both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active

truewhen $p : Person($addresses : addresses) exi sts (Address(state == "NC') from$addresses)
t hen modi fy ($p) {} // Assign person to sales region 1 in a nodify blockendrule "Apply a
di scount to people in the city of Raleigh"ruleflowgroup "test"lock-on-active truewhen $p
Per son($addr esses : addresses) exists (Address(city == "Ral ei gh") from $addresses) then
modify ($p) {} // Apply discount to person in a nodify bl ockend

regi on

1"rul ef | ow-group "test"

| ock-

on-active truewhen $p

Per son($addresses : addresses) exi sts (Address(state == "NC')

from

$addresses) then modi fy ($p) {} // Assign person to sales region 1 in
a

nmodi fy bl ockendrule "Apply a discount to people in the

city of

Ral ei gh"rul ef | ow-group "test"

| ock-

on-active truewhen $p

Per son($addresses : addresses) exists (Address(city == "Ral ei gh")
from

$addresses) then nodi fy ($p) {} // Apply discount to person in
a

However, the following slightly different approach does exhibit the problem:

rul e "Assign people in North Carolina (NC) to sales region 1"rul efl owgroup "test"l ock-on-active
t ruewhen $assessnment : Assessnent () $p : Person() $addresses : List() from$p. addresses
exi sts (Address(state == "NC') from $addresses) then modi fy ($assessment) {} // Modify
assessnent in a nodify bl ockendrul e "Apply a di scount to people in the city of Raleigh"rul eflow
group "test"l ock-on-active truewhen $assessnent : Assessnent () $p : Person() $addr esses

List() from $p. addresses exi sts (Address(city == "Ral eigh") from $addresses)then nodi fy
($assessnent) {} // Mdify assessment in a nodify bl ockend

regi on

1"rul ef | ow-group "test"

| ock-

on-active truewhen
$assessnment : Assessnent ()

$p : Person() $addr esses

List() from $p. addresses exi sts (Address(state == "NC')

from $addresses) then nodi fy ($assessnent) {} // Mdify assessnent in
a

274

Rule Language Reference

nodi fy bl ockendrule "Apply a discount to people in the
city of
Ral ei gh"rul ef | ow-group "test"
| ock-
on-active truewhen
$assessnment : Assessnent ()

$p : Person() $addresses : List()

from $p. addr esses exi sts (Address(city ==

"Ral ei gh")

from $addresses) t hen nodi fy ($assessnent) {} // Mdify assessnent in

a

In the above example, the $addresses variable is returned from the use of f r om The example
also introduces a new object, assessment, to highlight one possible solution in this case. If the
$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,
both rules fire as expected.

Though the above examples demonstrate how to combine the use of f r omwith | ock- on- acti ve
where no loss of rule activations occurs, they carry the drawback of placing a dependency on the
order of conditions on the LHS. In addition, the solutions present greater complexity for the rule
author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses
may be asserted into working memory and the use of f r omwould not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we
need to find other solutions. Another option is to reevaluate the need for | ock- on-acti ve. An
alternative to | ock- on- acti ve is to directly manage how rules within the same rule-flow group
activate one another by including conditions in each rule that prevent rules from activating each
other recursively when working memory is modified. For example, in the case above where a
discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether
the discount has already been applied. If so, the rule does not activate.

7.8.3.7.3. Conditional Element col I ect

pattemn
|
|
o S g W o W g & |
: collect A
' accurmulata 4

Figure 7.26. collect

275

Rule Language Reference

The Conditional Element col | ect allows rules to reason over a collection of objects obtained
from the given source or from the working memory. In First Oder Logic terms this is the cardinality
guantifier. A simple example:

inport java.util.ArrayListrule "Raise priority if systemhas nore than 3 pendi ng al ar ms" when

$system: System() $alarms : ArrayList(size >= 3) fromcollect(Alarnm system
== $system status == 'pending'))then /'l Raise priority, because system $system has 11
3 or nore alarns pending. The pending al arns /1 are $al arns. end

java.util.ArrayListrule "Raise priority if systemhas nore than 3 pending
al arns"
when $system :

Systen() $al arnms : Arraylist(size >= 3

) fromcollect(A arn(system == $system status == 'pending')
)

t hen /1 Raise priority, because system $system

has /1 3 or nore alarms pending. The pending

al arns /Il are

$al ar ms.

In the above example, the rule will look for all pending alarms in the working memory for each
given system and group them in ArrayLists. If 3 or more alarms are found for a given system,
the rule will fire.

The result pattern of collect can be any concrete class that implements the
java.util.Coll ection interface and provides a default no-arg public constructor. This means
that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as
long as it implements the j ava. util . Col | ecti on interface and provide a default no-arg public
constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the col | ect CE are in the scope of both source and result patterns and
therefore you can use them to constrain both your source and result patterns. But note that col -
| ect is a scope delimiter for bindings, so that any binding made inside of it is not available for
use outside of it.

Collect accepts nested f r omCEs. The following example is a valid use of "collect":

inmport java.util.LinkedList;rule "Send a nessage to all nothers"when $town : Town(nanme ==
"Paris') $rmot hers : LinkedLi st () from collect(Person(gender == "F',
children > 0) from $t own. get Peopl e()
)t hen /1 send a nmessage to all nothersend

java.util.LinkedList;rule "Send a nmessage to all

not hers"
when $town : Town(nane == 'Paris’
) $not hers : Li nkedLi st ()

fromcollect(Person(gender == "F', children > 0)
from $t own. get Peopl e()

276

Rule Language Reference

)

then /!l send a nessage to all
not her s

7.8.3.7.4. Conditional Element accunul ate

O—b[paﬂem]—h[“from’ H ‘accumulate’ H
|

o

accumulateFunction]—

Figure 7.27. accumulate

The Conditional Element accunul at e is a more flexible and powerful form of col | ect , in the sense
that it can be used to do what col | ect does and also achieve results that the CE col | ect is not
capable of achieving. Accumulate allows a rule to iterate over a collection of objects, executing
custom actions for each of the elements, and at the end, it returns a result object.

Accumulate supports both the use of pre-defined accumulate functions, or the use of inline custom
code. Inline custom code should be avoided though, as it is harder for rule authors to maintain,
and frequently leads to code duplication. Accumulate functions are easier to test and reuse.

The Accumulate CE also supports multiple different syntaxes. The preferred syntax is the top level
accumulate, as noted bellow, but all other syntaxes are supported for backward compatibility.

7.8.3.7.4.1. Accumulate CE (preferred syntax)
The top level accumulate syntax is the most compact and flexible syntax. The simplified syntax

is as follows:

accunul at e(<source pattern>; <functions> [;<constraints>])

277

Rule Language Reference

For instance, a rule to calculate the minimum, maximum and average temperature reading for a
given sensor and that raises an alarm if the minimum temperature is under 20C degrees and the
average is over 70C degrees could be written in the following way, using Accumulate:

Note

The DRL language defines "acc" as a synonym of "accumul at e". The author might
prefer to use "acc" as a less verbose keyword or the full keyword "accunul at e"
for legibility.

rul e "Rai se al arnf

when
$s : Sensor ()
accunul at e(Readi ng(sensor == $s, $tenp : tenperature);
$min : mn($tenp),
$max : max($tenp),
$avg : average($tenp);
$min < 20, $avg > 70)
then
/] raise the alarm
end

In the above example, min, max and average are Accumulate Functions and will calculate the
minimum, maximum and average temperature values over all the readings for each sensor.

Drools ships with several built-in accumulate functions, including:

« average
e min

¢ max

« count

e sum

« collectList
 collectSet

These common functions accept any expression as input. For instance, if someone wants to cal-
culate the average profit on all items of an order, a rule could be written using the average function:

rul e "Average profit"when $order : Order() accunul ate(Orderlten(order == $order, $cost
cost, $price : price); $avgProfit : average(1 - $cost / $price))then
/1 average profit for $order is $avgProfitend

profit"when $or der
O der () accumul ate(Orderlten(order == $order, $cost : cost, $price :

278

Rule Language Reference

price); $avgProfit : average(1 - $cost / $price
)

)t hen /1 average profit for $order

is

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific
functions can easily be added to the engine and rules can start to use them without any restrictions.
To implement a new Accumulate Function all one needs to do is to create a Java class that
implements the or g. drool s. core. runti me. rul e. TypedAccunul at eFunct i on interface. As an
example of an Accumulate Function implementation, the following is the implementation of the
aver age function:

/**
* An inplenmentation of an accunul ator capabl e of cal cul ati ng average val ues
*/
public class AverageAccunul at eFunction inplenents org.drool s.core.runtine.rul e. TypedAccunul at eFuncti on {

public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {

public void witeExternal (ObjectCQutput out) throws | CException {

public static class AverageData inplenents Externalizable {
public int count = 0;
public double total 0;

public AverageData() {}

public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {
count = in.readlnt();
t ot al = in.readDoubl e();

public void witeExternal (ObjectQutput out) throws | COException {
out.witelnt(count);
out.witeDoubl e(total);

/* (non-Javadoc)
* @ee org.drool s. base. accunmul at or s. Accunul at eFunct i on#cr eat eCont ext ()
*/
public Serializable createContext() {
return new AverageData();

/* (non-Javadoc)
* @ee org.drool s. core. base. accunul at ors. Accunul at eFunct i on#i ni t (j ava. | ang. Obj ect)
*/
public void init(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;

279

Rule Language Reference

dat a. count = 0;
dat a. t ot al

I
2

/* (non-Javadoc)
* @ee org.drools.core. base. accunul at ors. Accunul at eFuncti on#accunul at e(j ava. | ang. Obj ect,
java. | ang. Obj ect)
=
public void accurmul ate(Serializabl e context,
Obj ect val ue) {
Aver ageDat a data = (AverageData) context;
dat a. count ++;
data.total += ((Nunber) val ue). doubl eVal ue();

/* (non-Javadoc)
* @ee org.drools.core.base.accunul ators. Accunul at eFuncti on#reverse(j ava. | ang. oj ect,
java. |l ang. Obj ect)
*/
public void reverse(Serializable context,
Obj ect val ue) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count - -;
data.total -= ((Nunber) val ue). doubl eVal ue();

/* (non-Javadoc)
* @ee org.drool s.core. base. accunul at ors. Accunul at eFunct i on#get Resul t (j ava. | ang. Obj ect)
*/
public Object getResult(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;
return new Doubl e(data.count == 0 ? O : data.total / data.count);

/* (non-Javadoc)
* @ee org.drool s.core. base. accunul at ors. Accunul at eFunct i on#support sRever se()
*/
publ i c bool ean supportsReverse() {
return true;

| **

* | }

*/

public dass< ? > getResultType() {
return Nunber. cl ass;

The code for the function is very simple, as we could expect, as all the "dirty" integration work
is done by the engine. Finally, to use the function in the rules, the author can import it using the
"import accumulate" statement:

inmport accumul ate <cl ass_name> <functi on_nane>

280

Rule Language Reference

For instance, if one implements the class sone. package. Vari anceFunct i on function that imple-
ments the var i ance function and wants to use it in the rules, he would do the following:

Example 7.80. Example of importing and using the custom "variance"
accumulate function

import accumul ate sone. package. Vari anceFunction variance

rule "Cal cul ate Variance"

when

accunmul ate(Test($s : score), $v : variance($s))
t hen

/1 the variance of the test scores is $v
end

drool s. accunul ate. function. vari ance = sone. package. Vari anceFuncti on

7.8.3.7.4.2. Alternate Syntax: single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and expres-
sive. Nevertheless, Drools still supports previous syntaxes for backward compatibility purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may
add a pattern for the result object and use the "from" keyword to link it to the accumulate result.
Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:

281

Rule Language Reference

rule "Apply 10% discount to orders over US$ 100, 00"when $order : Order() $t ot al
Nunber (doubl eVal ue > 100) fromaccumul ate(Orderltem order == $order, $val ue :
val ue), sun($value))then # apply discount to $orderend

$

100, 00" when $or der

: Order () $total : Nunber(doubl eVal ue > 100

) fromaccunul ate(Orderlten(order == $order, $val ue :
val ue), sun($val ue

)
)t hen # apply di scount
to

In the above example, the accumulate element is using only one function (sum), and so, the rules
author opted to explicitly write a pattern for the result type of the accumulate function (Number)
and write the constraints inside it. There are no problems in using this syntax over the compact
syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to
use both the return type and the functions binding in the same accumulate statement.

7.8.3.7.4.3. Accumulate with inline custom code

Warning

The use of accumulate with inline custom code is not a good practice for several
reasons, including difficulties on maintaining and testing rules that use them, as
well as the inability of reusing that code. Implementing your own accumulate func-
tions is very simple and straightforward, they are easy to unit test and to use. This
form of accumulate is supported for backward compatibility only.

Another possible syntax for the accumulate is to define inline custom code, instead of using ac-
cumulate functions. As noted on the previous warned, this is discouraged though for the stated
reasons.

The general syntax of the accumul at e CE with inline custom code is:

<result pattern> from accunul ate(<source pattern>,
init(<init code>),
action(<action code>),
reverse(<reverse code>),
result(<result expression>))

The meaning of each of the elements is the following:

« <source pattern>: the source pattern is a regular pattern that the engine will try to match against
each of the source objects.

282

Rule Language Reference

<init code>: this is a semantic block of code in the selected dialect that will be executed once
for each tuple, before iterating over the source objects.

<action code>: this is a semantic block of code in the selected dialect that will be executed for
each of the source objects.

<reverse code>: this is an optional semantic block of code in the selected dialect that if present
will be executed for each source object that no longer matches the source pattern. The objective
of this code block is to undo any calculation done in the <action code> block, so that the engine
can do decremental calculation when a source object is modified or deleted, hugely improving
performance of these operations.

<result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

<result pattern>: this is a regular pattern that the engine tries to match against the object re-
turned from the <result expression>. If it matches, the accunmul at e conditional element evalu-
ates to true and the engine proceeds with the evaluation of the next CE in the rule. If it does
not matches, the accunul at e CE evaluates to false and the engine stops evaluating CEs for
that rule.

It is easier to understand if we look at an example:

rule "Apply 10% di scount to orders over US$ 100, 00"when $order : Order() $t ot al
Nunber (doubl eVal ue > 100) fromaccumul ate(Orderltem(order == $order, $value :
val ue), init(double total = 0;),

action(total += $value;), reverse(total -= $value;),

result(total))then # apply discount to $orderend

$
100, 00" when $or der
: Order () $total : Nunber(doubl eval ue > 100

) from accunmul ate(O derltenm(order == $order, $value :
val ue), init(double total =

0;), action(total +=

$val ue;), reverse(total -=

$val ue;), result(total

)
)t hen # apply di scount
to

In the above example, for each Or der in the Working Memory, the engine will execute the init

code initializing the total variable to zero. Then it will iterate over all Or der | t emobjects for that
order, executing the action for each one (in the example, it will sum the value of all items into
the total variable). After iterating over all Or der | t emobjects, it will return the value corresponding
to the result expression (in the above example, the value of variable t ot al). Finally, the engine
will try to match the result with the Nunber pattern, and if the double value is greater than 100,
the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an

283

Rule Language Reference

expression and, as such, it does not admit ';". If the user uses any other dialect, he must comply
to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user
writes it in order to benefit from the improved performance on update and delete.

The accunul at e CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rul e "Accumul at e usi ng cust om obj ect s"when $person : Person($likes : likes) $cheesery :
Cheesery(total Amount > 100) fromaccunul at e($cheese : Cheese(type == $likes),
init(Cheesery cheesery = new Cheesery();),
action(cheesery. addCheese($cheese);),
reverse(cheesery.renpoveCheese($cheese);),

resul t(cheesery));then /1 do sonet hi ngend
cust om obj ect s"when $per son . Person($likes
li kes) $cheesery : Cheesery(total Amount

> 100) from accunul ate($cheese : Cheese(type

== $likes), init(Cheesery cheesery =

new Cheesery();), action(cheesery. addCheese(
$cheese);), reverse(cheesery.renpveCheese(
$cheese);), resul t(

cheesery));then

7.8.3.8. Conditional Element eval

‘eval’ 1) BXDrassion §)

Figure 7.28. eval

The conditional element eval is essentially a catch-all which allows any semantic code (that re-
turns a primitive boolean) to be executed. This code can refer to variables that were bound in the
LHS of the rule, and functions in the rule package. Overuse of eval reduces the declarativeness
of your rules and can result in a poorly performing engine. While eval can be used anywhere in
the patterns, the best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes
them ideal for being used when functions return values that change over time, which is not allowed
within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are
equivalent to binding a variable to an appropriate type, and then using it in an eval node.

pl : Paraneter()p2 : Parameter()eval (pl.getList().containsKey(p2.getlten()))
raneter()p2
Par anmet er () eval (pl.getlList().containsKey(p2.getltem()

284

Rule Language Reference

pl : Paraneter()p2 : Paraneter()// call function isValid in the LHSeval (isValid(pl, p2))
rameter()p2

. Paranmeter()// call function isValid in
the LHSeval (isValid(pl, p2

7.8.3.9. Railroad diagrams
AcoummulateAction

E50

AccumulateClause

. .--@-.
R - — -

©

AccumulateFunction

P = n

Acoummlatelnit
@O
AcounmlsicResuli

Acounu] steReverse

=®

AccunmulateSteps

o

- . st L

©

-| AccumubieReverse]—
~| Accumule Ini |1| Accumulue Action }— -| AccumubseResuk |

Accumulations

©

- Tdemsifier |®«| AccumulueFuncion |

285

Rule Language Reference

AdditiveExpr

Annotation
=]
___ O
Arguments

AurayC reatorR est

Rclc]

AmayInitializer
©

_ _‘-I\f:rnhklrun.'lmer If_ y @ i
o -©

286

Rule Language Reference

AssignmentOperator

®a®®@@@®®@®@

BindingPattcmn

Block
=
o0
BooleanLiteral
(Fatse)

CompilationUnit

(aage) [Quieitine |- -

-

Conditional And

287

Rule Language Reference

Conditional Element Accunmulate

((acomtate) () { Eomdimiind |-~ Accumebioms |3)
Conditional Elemeni Eval
{wnlj@»{fmﬂﬁnﬂp |J®a
Conditional ElementExisis

(O (T

Conditional ElementForall

(Eorall) (1) Dt |-—(7)>
Conditional ElementMiot

() (1)
Conditional Element
® o=

288

Rule Language Reference

Conditional OrExpr

iy

“ Primigive Type

Creator

-~ WonWikicardType Argumenss | - [AraCreaniten |,
1 CreatedMName ——t

Definition

289

Rule Language Reference

Drigit
ExplicitGenericinvocationSuffix

*{'“P“}i SuperSuffic | .
1 Tkt fier H Arguments |-

ExplicitCenericinyocation

{ ¥onWikicardType Arguments | { Asgumenss |-

Exponent

©

E}: P

.
.,
o

©
@

ExpressionList

-
i,

FromAcooumulsteClause

{Em}l AccumubieC o |

From{Clamse

A £rom }{ Condioma)eExge |+

FromColleaiClause

(=) (Fie=) (D) Fmrmm | (D)

290

Rule Language Reference

FunctionDrfinition

{ function].:-'f — :| Iddentifier HP‘an.mﬂ:n H Black |

Cilobal Definition

(globul)| Type |{ Tk |-
[dentifierSuffix

Sologelc)
S OE=IO

Impont Definition

[nExpr

-IRehli-:rnIEqr |-—x
[nlineListExpr
@,_."
[nlineMapEspr
, O 5
(O B () Epmessim } (1)

InnerCreator

{ ldensifier || Argamenss |-

[nstancefExpr

_e{mrtmfjl'i Type |— 1

'|1"EFr

291

Rule Language Reference

[ntLiteral
Literal

%
- E
Boalkean] seral

[EaT]
ModifyStatement
O
© O -

MonWildcard TypeArzuments

O
o=

OrRestriction

o ConditionalFxgr .
e Ee e o

Parameters

[] []

O}

-@

292

Rule Language Reference

Placehalders

QualificdName

io

293

Rule Language Reference

(uery Definition
I/-l Conditionalor h
{(query) Swingld [QueryOpsions |- O
CueryDptions

RealLiteral B -
@,_ 1ﬂ| E=h
|

Real TypeSuffix

@ ;
@’

Relational Expr

4

Relational perator

Slollolole

294

Rule Language Reference

RuleAtiribuies

O — g

i .

RuleAtiribute

(Lock-on-active)
{rentegorw)
| (i)
-{dnt:—effucuu:),
- t
|
'@@

(i) [Semai |

RuleDs=fimition

{(zule)| Seineld || RulOpions |- o TheaPant |-

RuleOptions

A ewtends H Swingld |- | Annomtion | | RuleAssibues

Selactor

O (aper) Frso |

AOLED, (e |

—_—

O;l Iekemmifier |-; e -

Oy L

295

Rule Language Reference

RingleRestriction

|Rth.h:l'nﬂp:ﬂl:l' HSInﬂEqr|-

Rol—2l0

EpurcePattem

IE‘-:n:I:IJ-:l'nI:tEq:l' |
=) -GW{D; |
(o) [Sewei |

SuperSuffix
) ~
Ickemtifier |~
ThenPar
RieSowement |
TypeArsuments

O
O ==} ©
TypeArgument

T -
— _._‘“ (-

©)

296

Rule Language Reference

TypeDefinition

{(declare }{ QualifiedName | TypeOpsions |:.-- = J| {ﬂ_ﬂ)

TypeCplions

Type
e {D{D
Y
oS

- -| Ickemtifier |-|-'. o ..'_-' - a.@@-' "

UnaryExprdotPlusMinus

297

Rule Language Reference

Variablelnitializer

Arraynitialeer
Engpression

‘WhenPar

@ CondiioralCr

7.8.4. The Right Hand Side (then)

7.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;
this part should contain a list of actions to be executed. It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then
do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus
keeping it declarative and readable. If you find you need imperative and/or conditional code in the
RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose of
the RHS is to insert, delete or modify working memory data. To assist with that there are a few
convenience methods you can use to modify working memory; without having to first reference
a working memory instance.

updat e(object, handle) ; will tell the engine that an object has changed (one that has been bound
to something on the LHS) and rules may need to be reconsidered.

updat e(object) ; can also be used; here the Knowledge Helper will look up the facthandle for you,
via an identity check, for the passed object. (Note that if you provide Property Change Listeners
to your Java beans that you are inserting into the engine, you can avoid the need to call updat e()
when the object changes.). After a fact's field values have changed you must call update before
changing another fact, or you will cause problems with the indexing within the rule engine. The
modify keyword avoids this problem.

i nsert (newSomething()); will place a new object of your creation into the Working Memory.

i nsert Logi cal (newSomething()); is similar to insert, but the object will be automatically delet-
ed when there are no more facts to support the truth of the currently firing rule.

del et e(handle) ; removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the Know edgeHel per
instance that lets you access your Working Memory from rules files. The predefined variable
dr ool s of type Knowl edgeHel per lets you call several other useful methods. (Refer to the Know -
edgeHel per interface documentation for more advanced operations).

e The call drool s. hal t () terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fi reUnti | Hal t ().

298

Rule Language Reference

* Methods i nsert (Chj ect o), update(Obj ect o) and del et e(Cbj ect o) can be called on
dr ool s as well, but due to their frequent use they can be called without the object reference.

e drool s. get Wor ki ngMenor y() returns the Wor ki ngMenor y object.
e drool s. set Focus(String s) sets the focus to the specified agenda group.
e drool s. get Rul e(). get Nane(), called from a rule's RHS, returns the name of the rule.

e drool s. get Tupl e() returns the Tuple that matches the currently executing rule, and
drool s. get Activation() delivers the corresponding Activation. (These calls are useful for
logging and debugging purposes.)

The full Knowledge Runtime API is exposed through another predefined variable, kcont ext , of
type Ki eCont ext . Its method get Ki eRunt i me() delivers an object of type Ki eRunt i me, which, in
turn, provides access to a wealth of methods, many of which are quite useful for coding RHS logic.

e The call kcont ext . get Ki eRunti me() . hal t () terminates rule execution immediately.

» The accessor get Agenda() returns a reference to this session's Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A
fairly common paradigm is the activation of some agenda group, which could be done with the
lengthy call:

/1 give focus to the agenda group C eanUp
kcont ext . get Ki eRunti ne() . get Agenda() . get AgendaG oup("C eanUp"). set Focus();
(You can achieve the same using dr ool s. set Focus("C eanUp").)

e To run a query, you call get Quer yResul t s(Stri ng query), whereupon you may process the
results, as explained in section Query.

« A set of methods dealing with event management lets you, among other things, add and remove
event listeners for the Working Memory and the Agenda.

* Method get Ki eBase() returns the Ki eBase object, the backbone of all the Knowledge in your
system, and the originator of the current session.

« You can manage globals with set d obal (...), getd obal (...) and get d obal s().

» Method get Envi ronnent () returns the runtime's Envi ronment which works much like what
you know as your operating system's environment.

7.8.4.2. The nodi fy Statement

This language extension provides a structured approach to fact updates. It combines the update
operation with a number of setter calls to change the object's fields. This is the syntax schema
for the nodi f y statement:

299

Rule Language Reference

nodi fy (<fact-expression>) {
<expression> [, <expression>]*

The parenthesized <fact-expression> must yield a fact object reference. The expression list in
the block should consist of setter calls for the given object, to be written without the usual object
reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 7.81. A modify statement

rule "nmodify stilton"when $stilton : Cheese(type == "stilton")then nodi fy($stilton){
setPrice(20), set Age("overripe") }end

stilton"when $stilton : Cheese(type

"stilton")then nmodi fy($stilton
){ set Price(

20), set Age(

"overripe")

The advantages in using the modify statment are particularly clear when used in conjuction with
fine grained property change listeners. See the corresponding section for more details.

7.8.5. Conditional named consequences

Sometimes the constraint of having one single consequence for each rule can be somewhat lim-
iting and leads to verbose and difficult to be maintained repetitions like in the following example:

rule "G ve 10%di scount to custoners ol der than 60"when $custoner : Custoner(age > 60)then
nodi fy($custoner) { setDiscount(0.1) };endrule "G ve free parking to custoners ol der than
60" when $custoner : Custonmer(age > 60) $car : Car (owner == S$customer)then
nodi fy($car) { setFreeParking(true) };end
t han
60" when $custoner : Custoner(age >
60

)t hen nodi fy($custoner) { setDi scount(0.1
)

};endrule "G ve free parking to custoners ol der

t han

60" when $custoner : Custoner(age >
60) $car : Car (owner ==
$cust oner

)t hen nodi fy($car) { setFreeParking(true
)

300

Rule Language Reference

It is already possible to partially overcome this problem by making the second rule extending the
first one like in:

rule "G ve 10%di scount to custoners ol der than 60"when $custoner : Custoner(age > 60)then
nmodi fy($custonmer) { setDiscount(0.1) };endrule "G ve free parking to custoners ol der than
60" extends "G ve 10% di scount to customers ol der than 60"when $car : Car (owner ==
$custoner)then nmodi fy($car) { setFreeParking(true) };end
t han
60" when $custoner : Custoner(age >
60
)t hen nodi fy($custoner) { setDiscount(0.1

)

};endrule "G ve free parking to customers ol der

than 60" extends "G ve 10% di scount to custoners ol der
t han

60" when $car : Car (owner ==

$cust oner

)t hen nodi fy($car) { setFreeParking(true
)

Anyway this feature makes it possible to define more labelled consequences other than the default
one in a single rule, so, for example, the 2 former rules can be compacted in only one like it follows:

rule "Gve 10% discount and free parking to custoners older than 60"when $cust oner
Cust oner (age > 60) do[gi veDi scount] $car : Car (owner == $custoner)then nodi fy($car)
{ setFreeParking(true) };then[giveD scount] nodi fy($custoner) { setDiscount(0.1) };end
than 60"when $custoner : Custoner(age >
60)

do[gi veDi scount] $car : Car (owner ==
$cust oner)then modi fy($car) { setFreeParking(true
) };then[giveDi scount] nodi fy($custoner) { setDiscount(0.1

This last rule has 2 consequences, the usual default one, plus another one named "giveDiscount"
that is activated, using the keyword do, as soon as a customer older than 60 is found in the
knowledge base, regardless of the fact that he owns a car or not. The activation of a named
consequence can be also guarded by an additional condition like in this further example:

rule "G ve free parking to custoners ol der than 60 and 10%di scount to gol den ones anong t heni when

$custoner : Custoner(age > 60) if (type == "Colden") do[giveD scount] $car
Car (owner == $customer)then nodi fy($car) { setFreeParking(true) };then[giveD scount]

nmodi fy($custoner) { setDiscount(0.1) };end

ones

anmong t henl when $custoner : Custoner(age

> 60) if (type ==

"Col den") do[gi veDi scount] $car : Car (owner

301

Rule Language Reference

$custoner)then nodi fy($car) { setFreeParki ng(
true

) };then[giveDi scount] nodi fy($custoner) { setDi scount (
0.1

The condition in the if statement is always evaluated on the pattern immediately preceding it. In
the end this last, a bit more complicated, example shows how it is possible to switch over different
conditions using a nested if/else statement:

rule "G ve free parking and 10% di scount to over 60 Col den customer and 5% to Silver ones"when

$custoner : Custoner(age > 60) if (type == "Golden") do[giveDi scount10]
else if (type == "Silver") break[giveD scount5] $car : Car (owner == $customer)then
nodi fy($car) { setFreeParking(true) };then[giveD scount10] nodi fy($cust oner)
{ setDiscount(0.1) };then[giveDi scount5] nodi fy($custoner) { setDiscount(0.05) };end
Si | ver ones"when $custoner : Custorer(age
> 60) if (type ==
"Col den") do[gi veDi scount 10] elseif (type ==
"Silver") break[giveDi scount5] $car : Car (owner

$cust omer)t hen nmodi fy($car) { setFreeParking(

true
) };then[giveD scount 10] nodi fy($custoner) { setDi scount (
0.1
) };then[gi veD scount 5] nmodi fy($custoner) { set D scount(
0. 05

Here the purpose is to give a 10% discount AND a free parking to Golden customers over 60, but
only a 5% discount (without free parking) to the Silver ones. This result is achieved by activating
the consequence named "giveDiscount5" using the keyword break instead of do. In fact do just
schedules a consequence in the agenda, allowing the remaining part of the LHS to continue of
being evaluated as per normal, while break also blocks any further pattern matching evaluation.
Note, of course, that the activation of a named consequence not guarded by any condition with
break doesn't make sense (and generates a compile time error) since otherwise the LHS part
following it would be never reachable.

7.8.6. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound
to an int primitive when used in a code block or expression will no longer need manual unboxing;
unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable
bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to
handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system
attempts to coerce one of the values into a comparable format; so a primitive is comparable to
an object wrapper.

302

Rule Language Reference

7.9. Query
O

._’[-quﬁ-r-_.‘r‘] ,[nam'ﬂ]— 1
—(Cpe (e }- {7

Figure 7.29. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"
nor "then". A query has an optional set of parameters, each of which can be optionally typed. If
the type is not given, the type Object is assumed. The engine will attempt to coerce the values
as needed. Query names are global to the KieBase; so do not add queries of the same name to
different packages for the same RuleBase.

To return the results use ksessi on. get Quer yResul t s(" nane"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched
the query.

The first example presents a simple query for all the people over the age of 30. The second one,
using parameters, combines the age limit with a location.

Example 7.82. Query People over the age of 30

query "peopl e over the age of 30" person : Person(age > 30)end
person : Person(age > 30

)

Example 7.83. Query People over the age of x, and who liveiny

query "peopl e over the age of x" (int x, Stringy) person : Person(age > x, location ==y)end

303

Rule Language Reference

y) person : Person(age > x, location ==y

)

We iterate over the returned QueryResults using a standard "for" loop. Each elementis a QueryRe-
sultsRow which we can use to access each of the columns in the tuple. These columns can be
accessed by bound declaration name or index position.

Example 7.84. Query People over the age of 30

QueryResul ts results = ksessi on. get Quer yResul t s("peopl e over t he age of

30");Systemout.println("we have " + results.size() + " people over the age of
30"); Systemout.println("These people are are over 30:");for (QueryResultsRowrow: results)

{ Person person = (Person) row. get("person"); System out. println(person. get Name()

+\n")5}

30");Systemout.printin("we have " + results.size() + " people over the age of
30");Systemout.println("These people are are over

30:");for (QueryResultsRow row : results

) { Person person = (Person) row. get(
"person"); System out. println(person.getNanme() +
"\

Support for positional syntax has been added for more compact code. By default the declared
type order in the type declaration matches the argument position. But it possible to override these
using the @position annotation. This allows patterns to be used with positional arguments, instead
of the more verbose named arguments.

decl are Cheese name : String @osition(1) shop : String @osition(2) price : int
@osi tion(0)end

Cheese nanme : String

@osition(1) shop : String

@osi tion(2) price : int

@osition(0)

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces or methods. The isContainedIn query below demonstrates
the use of positional arguments in a pattern; Locati on(x, y;) instead of Location(thing ==
X, location ==y).

Queries can now call other queries, this combined with optional query arguments provides deriva-
tion query style backward chaining. Positional and named syntax is supported for arguments. It
is also possible to mix both positional and named, but positional must come first, separated by a
semi colon. Literal expressions can be passed as query arguments, but at this stage you cannot
mix expressions with variables. Here is an example of a query that calls another query. Note that

304

Rule Language Reference

'z' here will always be an 'out' variable. The '?' symbol means the query is pull only, once the
results are returned you will not receive further results as the underlying data changes.

decl are Location thing : String location : String endquery isContainedin(String x, String
y) Location(x, Vy;) or (Location(z, y;) and ?isContainedln(x, z;))end

Locati on thing :

String | ocation :

String endquery isContainedln(String x, String y
)

Location(x, V;)
or (Location(z, y;) and ?i sContai nedl n(x,

z;)

As previously mentioned you can use live "open" queries to reactively receive changes over time
from the query results, as the underlying data it queries against changes. Notice the "look" rule
calls the query without using '?'.

query isContainedln(String x, String y) Location(x, vy;) or (Location(z, y;)
and isContainedln(x, z;))endrule |ook when Person($I : likes) i sCont ai nedl n($I,
"office';)then insertLogical ($I 'is in the office');end

) Locati on(x,

yi)

or (Location(z, y;) and isContainedln(x, z;)

)endrul e | ook
when Person($I : likes
) i sContai nedln($I, 'office';

Jthen insertLogical($I 'is in the office

D

Drools supports unification for derivation queries, in short this means that arguments are option-
al. It is possible to call queries from Java leaving arguments unspecified using the static field
org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of
Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at
compile time whether an argument is in or an out, this can be defined purely at runtime on each
use. The following example will return all objects contained in the office.

resul ts = ksessi on. get QueryResul ts("i sContai nedln", new Cbject[] { Variable.v, "office" });I =

new Arrayli st<List<String>>();for (QueryResultsRowr : results) { | .add(Arrays. asList(new
String[] { (String) r.get("x"), (String) r.get("y") })):}

fice" })l

= new Arraylist<List<String>>();for (QueryResultsRow r

results) { |.add(Arrays.asList(new String[] { (String) r.get("x"), (String) r.get("y")
1)

305

Rule Language Reference

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

The following is not yet supported:

« List and Map unification
» Variables for the fields of facts

» Expression unification - pred(X, X + 1, X *Y /7))

7.10. Domain Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to
your problem domain. A set of DSL definitions consists of transformations from DSL "sentences"
to DRL constructs, which lets you use of all the underlying rule language and engine features.
Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.
But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS,
and you can use those as well, although they may not provide you with the full DSL functionality.

7.10.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the tech-
nical intricacies resulting from the modelling of domain object and the rule engine's native lan-
guage and methods. If your rules need to be read and validated by domain experts (such as
business analysts, for instance) who are not programmers, you should consider using a DSL; it
hides implementation details and focuses on the rule logic proper. DSL sentences can also act as
"templates” for conditional elements and consequence actions that are used repeatedly in your
rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time feature, requiring
a special parser and transformer.

7.10.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence
actions. A global substitution mechanism ("keyword") is also available.

Example 7.85. Example DSL mapping
[when] Sonet hi ng i s {col our}=Sonet hi ng(col our=="{col our}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid
for the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you

306

Rule Language Reference

use in the rule; typically a natural language expression, but it doesn't have to be. The part to the
right of the equal sign ("=") is the mapping of the expression into the rule language. The form of
this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term
according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in
the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (here: {col our}). Then, the
values obtained from these captures are then interpolated wherever that name, again enclosed
in braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces
whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as
regular expressions in a pattern matching operation against a line of the DSL rule file, matching all
or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character
is optional. One good reason to use this is to overcome variations in natural language phrases of
your DSL. But, given that these expressions are regular expression patterns, this also means that
all "magic" characters of Java's pattern syntax have to be escaped with a preceding backslash ('\").

Itis important to note that the compiler transforms DSL rule files line by line. In the above example,
all the text after "Something is " to the end of the line is captured as the replacement value for
"{colour}", and this is used for interpolating the target string. This may not be exactly what you
want. For instance, when you intend to merge different DSL expressions to generate a composite
DRL pattern, you need to transform a DSLR line in several independent operations. The best way
to achieve this is to ensure that the captures are surrounded by characteristic text - words or even
single characters. As a result, the matching operation done by the parser plucks out a substring
from somewhere within the line. In the example below, quotes are used as distinctive characters.
Note that the characters that surround the capture are not included during interpolation, just the
contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by
the following example. Note that a single line such as Sonething is "green" and another
sol i d thing is now correctly expanded.

Example 7.86. Example with quotes

[when] sonething is "{col our}"=Sonet hi ng(col our=="{col our}")
[when] anot her {state} thing=CherThing(state=="{state})"

Itis a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions
as much as possible. The main reason is that punctuation is easy to forget for rule authors using
your DSL. Another reason is that parentheses, the period and the question mark are magic char-
acters, requiring escaping in the DSL definition.

307

Rule Language Reference

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then]do sonmething= if (foo) \{ doSonething(); \}
\}

Note

If braces "{" and "}" should appear in the replacement string of a DSL definition,
escape them with a backslash ('\).

Example 7.87. Examples of DSL mapping entries

This is a conment to be i gnored. [when] There is a person wth name of
"{nane}" =Per son(nane=="{nane}") [when] Person is at least {age} years old and lives
in "{location}"= Person(age >= {age}, | ocati on=="{l ocation}")[then]Log

"{message}"=System out. println("{message}");[when] And = and
i gnored. [when] There is a person with name of
"{nane}" =Per son(nane=="{nane}") [when] Person is at |east {age} years old and lives in
"{location}"= Person(age >= {age},
| ocation=="{location}")[then]Log
"{nmessage}"=Systemout.println("{message}");[when] And =

Given the above DSL examples, the following examples show the expansion of various DSLR
snippets:

Example 7.88. Examples of DSL expansions

There is a person with nane of "Kitty" ==> Person(nane="Kitty")Person is at |east 42
years old and lives in "Atlanta" ==> Person(age >= 42, |ocation="Atlanta")Log "boo" ==>
System out. println("boo"); There is a person with name of "Bob" and Person is at |east 30 years
old and lives in "Utah" ==> Person(nane="Bob") and Person(age >= 30, |ocation="Utah")

"Kitty' ==>
Person(name="Kitty")Person is at |east 42 years old and lives in
"Atlanta" ==> Person(age >= 42,
| ocation="At| anta") Log
"boo" ==>

System out. println("boo"); There is a person with nane of "Bob" and Person is at |east 30 years old and lives in
" Ut ah" ==> Per son(nanme="Bob") and Person(age >= 30,

308

Rule Language Reference

@ Note
Don't forget that if you are capturing plain text from a DSL rule line and want to
use it as a string literal in the expansion, you must provide the quotes on the right
hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where
one ends and the next one begins and where the text representing a parameter ends. (Otherwise
you risk getting all the text until the end of the line as a parameter value.) The DSL expressions
are tried, one after the other, according to their order in the DSL definition file. After any match,
all remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text
are written as \ n.

7.10.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination
of constraints to a pattern. Given that a fact type may have many fields, having to provide an
individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL

expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and
country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any
combination of constraint involving these fields.

[when] There is a Cheese wi th=Cheese()

[when] - age is |less than {age}=age<{age}

[when] - type is '{type}' =type=='{type}

[when] - country equal to '{country}'=country=="{country}'

You can then write rules with conditions like the following:

There is a Cheese with
- age is less than 42
- type is "stilton'

309

Rule Language Reference

The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern,
inserting a comma when it is required. For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all all numeric fields with all relational operators (according to the DSL expression "age
is less than..." in the preceding example) produces an unwieldy amount of DSL entries. But you
can define DSL phrases for the various operators and even a generic expression that handles
any field constraint, as shown below. (Notice that the expression definition contains a regular
expression in addition to the variable name.)

[when][]is less than or equal to=<=

[when][]is |ess than=<

[when][]is greater than or equal to=>=

[when][]is greater than=>

[when][]is equal to===

[when] [] equal s===

[when][] There is a Cheese wi t h=Cheese()

[when][]1- {field:\w} {operator} {value:\d*}={field} {operator} {val ue}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with
- age is less than 42
- rating is greater than 50
- type equals 'stilton

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches
the last DSL entry. This removes the hyphen, but the final result is still added as a constraint to
the preceding pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=="stilton")

@ Note
The order of the entries in the DSL is important if separate DSL expressions are
intended to match the same line, one after the other.

7.10.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,
and to test them as you develop. This will provide you with a stable framework of conditional

310

Rule Language Reference

elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to
the data model representing the application data that should be subject to the reasoning process
defined in rules. Notice that writing rules is generally easier if most of the data model's types are
facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and
to mark variable parts as parameters. This provides reliable leads as to what might be a handy
DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and
base your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing a
line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty
quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter
to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL
should still be able to identify DSL phrases by some fixed text.

7.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file
into a file according to DRL syntax.

« A line starting with "#" or "//" (with or without preceding white space) is treated as a comment.
A comment line starting with "#/" is scanned for words requesting a debug option, see below.

* Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry
definition.

* Any other line is appended to the preceding DSL entry definition, with the line end replaced
by a space.

A DSL entry consists of the following four parts:

« A scope definition, written as one of the keywords "when" or "condition”, "then" or "conse-
guence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the DSL
entry is valid for the condition or the consequence of a rule, or both. A scope indication of "key-
word" means that the entry has global significance, i.e., it is recognized anywhere in a DSLR file.

« Atype definition, written as a Java class name, enclosed in brackets. This part is optional unless
the the next part begins with an opening bracket. An empty pair of brackets is valid, too.

« A DSL expression consists of a (Java) regular expression, with any number of embedded vari-
able definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces

311

Rule Language Reference

("{" and "}"). It consists of a variable name and two optional attachments, separated by colons
(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned
to the variable; if there are two attachments, the first one is a hint for the GUI editor and the
second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a preced-
ing backslash ("\") if they should occur literally within the expression.

e The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, i.e., a variable
name enclosed in braces. Optionally, the variable name may be followed by an exclamation
mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should
occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with
"#/" which may contain one or more words from the table presented below. The resulting output
is written to standard output.

Table 7.2. Debug options for DSL expansion

Word Description
result Prints the resulting DRL text, with line numbers.
steps Prints each expansion step of condition and

consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope "keyword".

when Dumps the internal representation of all DSL
entries with scope "when" or "*",

then Dumps the internal representation of all DSL
entries with scope "then" or "*".

usage Displays a usage statistic of all DSL entries.

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

Comment : DSL exanpl es#/ debug: display result and usage# keyword definition: replaces "regula"

by "rul e"[keyword] []regul a=rul e# conditional elenment: "T" or "t", "a" or "an", convert matched
word[when][][Tt]here is an? {entity:\wt}= ${entity!lc}: {entitylucfirst} ()# consequence
statenment: convert matched word, literal braces[then][]update {entity:\wt}=nodify(${entity

lc})\{ \}
exanpl es#/ debug: display result

and usage# keyword definition: replaces "regul a"
by

312

Rule Language Reference

"rul e"[keyword] []regul a=rul e# conditional elenment: "T" or "t", "a" or "an", convert
mat ched word[when][][Tt] here is an?
{entity:\w+}= ${entity!lc}: {entity!

ucfirst} ()# consequence statenent: convert natched word,
literal braces[then][]update {entity:\wt}=nodify(${entity!lc}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (".*?"). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are
located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being ".*?". If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text cor-
responding to the regular expression capture. This text may be modified according to the string
transformation function given in the variable reference; see below for details.

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one
of the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint)
is simply inserted, otherwise a comma (",") is inserted beforehand.

Ifa DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and
"I"). If this pair is empty, the expanded line (which should contain a valid method call) is simply

inserted, otherwise a comma (",") is inserted beforehand.

313

Rule Language Reference

@ Note
It is currently not possible to use a line with a leading hyphen to insert text into
other conditional element forms (e.g., "accumulate") or it may only work for the first
insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 7.3. String transformation functions

Name Description

uc Converts all letters to upper case.

Ic Converts all letters to lower case.

ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and "-" from the string. If the
last two digits in the original string are preceded
by "." or ",", a decimal period is inserted in the
corresponding position.

a?b/c Compares the string with string a, and if they
are equal, replaces it with b, otherwise with c.
But ¢ can be another triplet a, b, ¢, so that the

entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions[when][]There is an? {entity}=${entity!lc}: {entity!ucfirst}()[when]
[1- with an? {attr} greater than {amount}={attr} <= {anpunt!nun}[when][]- with a {what}
{attr}={attr} {what!positive?>0/negative?%t; 0/ zero?==0/ ERROR}

tions for conditions[when][]There is an?

{entity}=${entity!lc}: {entitylucfirst}()[when][]- with an? {attr} greater than
{amount}={attr} <= {ambunt!nun}[when][]- with a {what} {attr}={attr} {what!

A file containing a DSL definition has to be put under the resources folder or any of its subfolders
like any other drools artifact. It must have the extension . dsl, or alternatively be marked with
type Resour ceType. DSL. when programmatically added to a Ki eFi | eSyst em For a file using DSL
definition, the extension . dsl r should be used, while it can be added to a Ki eFi | eSyst emwith
type Resour ceType. DSLR.

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule lan-
guage expressions.

314

Chapter 8. Complex Event
Processing

8.1. Complex Event Processing

There is no broadly accepted definition on the term Complex Event Processing. The term Event
by itself is frequently overloaded and used to refer to several different things, depending on the
context it is used. Defining terms is not the goal of this guide and as so, lets adopt a loose definition
that, although not formal, will allow us to proceed with a common understanding.

So, in the scope of this guide:

Important

Event, is a record of a significant change of state in the application domain at a
given point in time.

For instance, on a Stock Broker application, when a sale operation is executed, it causes a change
of state in the domain. This change of state can be observed on several entities in the domain,
like the price of the securities that changed to match the value of the operation, the ownership of
the traded assets that changed from the seller to the buyer, the balance of the accounts from both
seller and buyer that are credited and debited, etc. Depending on how the domain is modelled, this
change of state may be represented by a single event, multiple atomic events or even hierarchies
of correlated events. In any case, in the context of this guide, Event is the record of the change
of a particular piece of data in the domain.

Events are processed by computer systems since they were invented, and throughout the history,
systems responsible for that were given different names and different methodologies were em-
ployed. It wasn't until the 90's though, that a more focused work started on EDA (Event Driven
Architecture) with a more formal definition on the requirements and goals for event processing.
Old messaging systems started to change to address such requirements and new systems started
to be developed with the single purpose of event processing. Two trends were born under the
names of Event Stream Processing and Complex Event Processing.

In the very beginnings, Event Stream Processing was focused on the capabilities of processing
streams of events in (near) real time, while the main focus of Complex Event Processing was
on the correlation and composition of atomic events into complex (compound) events. An impor-
tant (maybe the most important) milestone was the publishing of Dr. David Luckham's book "The
Power of Events" in 2002. In the book, Dr Luckham introduces the concept of Complex Event
Processing and how it can be used to enhance systems that deal with events. Over the years,
both trends converged to a common understanding and today these systems are all referred to
as CEP systems.

315

Complex Event Processing

This is a very simplistic explanation to a really complex and fertile field of research, but sets a high
level and common understanding of the concepts that this guide will introduce.

The current understanding of what Complex Event Processing is may be briefly described as the
following quote from Wikipedia:

Important

"Complex Event Processing, or CEP, is primarily an event pro-
cessing concept that deals with the task of processing multiple
events with the goal of identifying the meaningful events within
the event cloud. CEP employs techniques such as detection of
complex patterns of many events, event correlation and abstrac-
tion, event hierarchies, and relationships between events such as
causality, membership, and timing, and event-driven processes."
—Wikipedia [http://en.wikipedia.org/wi-
ki/Complex_event_processing]

In other words, CEP is about detecting and selecting the interesting events (and only them) from
an event cloud, finding their relationships and inferring new data from them and their relationships.

@ Note
For the remaining of this guide, we will use the terms Complex Event Processing
and CEP as a broad reference for any of the related technologies and techniques,
including but not limited to, CEP, Complex Event Processing, ESP, Event Stream
Processing and Event Processing in general.

8.2. Drools Fusion

Event Processing use cases, in general, share several requirements and goals with Business
Rules use cases. These overlaps happen both on the business side and on the technical side.

On the Business side:
» Business rules are frequently defined based on the occurrence of scenarios triggered by events.
Examples could be:

» On an algorithmic trading application: take an action if the security price increases X% com-
pared to the day opening price, where the price increases are usually denoted by events on
a Stock Trade application.

» On a monitoring application: take an action if the temperature on the server room increases
X degrees in Y minutes, where sensor readings are usually denoted by events.

316

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

Complex Event Processing

« Both business rules and event processing queries change frequently and require immediate
response for the business to adapt itself to new market conditions, new regulations and new
enterprise policies.

From a technical perspective:

« Both require seamless integration with the enterprise infrastructure and applications, specially
on autonomous governance, including, but not limited to, lifecycle management, auditing, se-
curity, etc.

« Both have functional requirements like pattern matching and non-functional requirements like
response time and query/rule explanation.

Even sharing requirements and goals, historically, both fields were born appart and although the
industry evolved and one can find good products on the market, they either focus on event pro-
cessing or on business rules management. That is due not only because of historical reasons but
also because, even overlapping in part, use cases do have some different requirements.

Important

Drools was also born as a rules engine several years ago, but following the vision
of becoming a single platform for behavioral modelling, it soon realized that it could
only achieve this goal by crediting the same importance to the three complementary
business modelling techniques:

e Business Rules Management
» Business Processes Management

» Complex Event Processing

In this context, Drools Fusion is the module responsible for adding event processing capabilities
into the platform.

Supporting Complex Event Processing, though, is much more than simply understanding what an
event is. CEP scenarios share several common and distinguishing characteristics:

 Usually required to process huge volumes of events, but only a small percentage of the events
are of real interest.

» Events are usually immutable, since they are a record of state change.

« Usually the rules and queries on events must run in reactive modes, i.e., react to the detection
of event patterns.

317

Complex Event Processing

» Usually there are strong temporal relationships between related events.

« Individual events are usually not important. The system is concerned about patterns of related
events and their relationships.

« Usually, the system is required to perform composition and aggregation of events.

Based on this general common characteristics, Drools Fusion defined a set of goals to be achieved
in order to support Complex Event Processing appropriately:

» Support Events, with their proper semantics, as first class citizens.

« Allow detection, correlation, aggregation and composition of events.

» Support processing of Streams of events.

» Support temporal constraints in order to model the temporal relationships between events.
» Support sliding windows of interesting events.

» Support a session scoped unified clock.

« Support the required volumes of events for CEP use cases.

» Support to (re)active rules.

« Support adapters for event input into the engine (pipeline).

The above list of goals are based on the requirements not covered by Drools Expert itself, since
in a unified platform, all features of one module are leveraged by the other modules. This way,
Drools Fusion is born with enterprise grade features like Pattern Matching, that is paramount to a
CEP product, but that is already provided by Drools Expert. In the same way, all features provided
by Drools Fusion are leveraged by Drools Flow (and vice-versa) making process management
aware of event processing and vice-versa.

For the remaining of this guide, we will go through each of the features Drools Fusion adds to the
platform. All these features are available to support different use cases in the CEP world, and the
user is free to select and use the ones that will help him model his business use case.

8.3. Event Semantics

An event is a fact that present a few distinguishing characteristics:

« Usually immutables: since, by the previously discussed definition, events are a record of a
state change in the application domain, i.e., a record of something that already happened, and
the past can not be "changed", events are immutables. This constraint is an important require-

318

Complex Event Processing

ment for the development of several optimizations and for the specification of the event lifecy-
cle. This does not mean that the Java object representing the object must be immutable. Quite
the contrary, the engine does not enforce immutability of the object model, because one of the
most common use cases for rules is event data enrichment.

E] Note
As a best practice, the application is allowed to populate un-populated event
attributes (to enrich the event with inferred data), but already populated attributes
should never be changed.

» Strong temporal constraints: rules involving events usually require the correlation of multiple
events, specially temporal correlations where events are said to happen at some point in time
relative to other events.

* Managed lifecycle: due to their immutable nature and the temporal constraints, events usually
will only match other events and facts during a limited window of time, making it possible for
the engine to manage the lifecycle of the events automatically. In other words, one an event is
inserted into the working memory, it is possible for the engine to find out when an event can no
longer match other facts and automatically delete it, releasing its associated resources.

« Use of sliding windows: since all events have timestamps associated to them, it is possible
to define and use sliding windows over them, allowing the creation of rules on aggregations of
values over a period of time. Example: average of an event value over 60 minutes.

Drools supports the declaration and usage of events with both semantics: point-in-time events
and interval-based events.

@ Note
A simplistic way to understand the unitification of the semantics is to consider a
point-in-time event as an interval-based event whose duration is zero.

8.4. Event Processing Modes

Rules engines in general have a well known way of processing data and rules and provide the
application with the results. Also, there is not many requirements on how facts should be presented
to the rules engine, specially because in general, the processing itself is time independent. That
is a good assumption for most scenarios, but not for all of them. When the requirements include
the processing of real time or near real time events, time becomes and important variable of the
reasoning process.

The following sections will explain the impact of time on rules reasoning and the two modes pro-
vided by Drools for the reasoning process.

319

Complex Event Processing

8.4.1. Cloud Mode

The CLOUD processing mode is the default processing mode. Users of rules engine are familiar
with this mode because it behaves in exactly the same way as any pure forward chaining rules
engine, including previous versions of Drools.

When running in CLOUD mode, the engine sees all facts in the working memory, does not matter
if they are regular facts or events, as a whole. There is no notion of flow of time, although events
have a timestamp as usual. In other words, although the engine knows that a given event was
created, for instance, on January 1st 2009, at 09:35:40.767, it is not possible for the engine to
determine how "old" the event is, because there is no concept of "now".

In this mode, the engine will apply its usual many-to-many pattern matching algorithm, using the
rules constraints to find the matching tuples, activate and fire rules as usual.

This mode does not impose any kind of additional requirements on facts. So for instance:

« There is no notion of time. No requirements clock synchronization.

e There is no requirement on event ordering. The engine looks at the events as an unordered
cloud against which the engine tries to match rules.

On the other hand, since there is no requirements, some benefits are not available either. For
instance, in CLOUD mode, it is not possible to use sliding windows, because sliding windows are
based on the concept of "now" and there is no concept of "now" in CLOUD mode.

Since there is no ordering requirement on events, it is not possible for the engine to determine
when events can no longer match and as so, there is no automatic life-cycle management for
events. l.e., the application must explicitly delete events when they are no longer necessary, in
the same way the application does with regular facts.

Cloud mode is the default execution mode for Drools, but in any case, as any other configuration
in Drools, it is possible to change this behavior either by setting a system property, using config-
uration property files or using the API. The corresponding property is:

Ki eBaseConfiguration config = KieServices. Factory. get().newKi eBaseConfiguration();
config.setOption(EventProcessi ngOpti on. CLOUD);

The equivalent property is:

dr ool s. event Processi ngMbde = cl oud

320

Complex Event Processing

8.4.2. Stream Mode

The STREAM processing mode is the mode of choice when the application needs to process
streams of events. It adds a few common requirements to the regular processing, but enables a
whole lot of features that make stream event processing a lot simpler.

The main requirements to use STREAM mode are:

« Events in each stream must be time-ordered. l.e., inside a given stream, events that happened
first must be inserted first into the engine.

» The engine will force synchronization between streams through the use of the session clock,
so, although the application does not need to enforce time ordering between streams, the use
of non-time-synchronized streams may result in some unexpected results.

Given that the above requirements are met, the application may enable the STREAM mode using
the following API:

Ki eBaseConfi gurati on config = Ki eServices. Factory. get().newKi eBaseConfiguration();
config.setOption(EventProcessi ngOpti on. STREAM) ;

Or, the equivalent property:

dr ool s. event Processi ngvbde = stream

When using the STREAM, the engine knows the concept of flow of time and the concept of "now",
i.e., the engine understands how old events are based on the current timestamp read from the
Session Clock. This characteristic allows the engine to provide the following additional features
to the application:

« Sliding Window support
« Automatic Event Lifecycle Management
» Automatic Rule Delaying when using Negative Patterns

All these features are explained in the following sections.
8.4.2.1. Role of Session Clock in Stream mode

When running the engine in CLOUD mode, the session clock is used only to time stamp the
arriving events that don't have a previously defined timestamp attribute. Although, in STREAM
mode, the Session Clock assumes an even more important role.

In STREAM mode, the session clock is responsible for keeping the current timestamp, and based
on it, the engine does all the temporal calculations on event's aging, synchronizes streams from
multiple sources, schedules future tasks and so on.

321

Complex Event Processing

Check the documentation on the Session Clock section to know how to configure and use different
session clock implementations.

8.4.2.2. Negative Patterns in Stream Mode

Negative patterns behave different in STREAM mode when compared to CLOUD mode. In
CLOUD mode, the engine assumes that all facts and events are known in advance (there is no
concept of flow of time) and so, negative patterns are evaluated immediately.

When running in STREAM mode, negative patterns with temporal constraints may require the
engine to wait for a time period before activating a rule. The time period is automatically calculated
by the engine in a way that the user does not need to use any tricks to achieve the desired result.

For instance:

Example 8.1. arule that activates immediately upon matching

rule "Sound the al arnt
when
$f : FireDetected()
not (SprinklerActivated())
t hen
/1 sound the alarm
end

The above rule has no temporal constraints that would require delaying the rule, and so, the rule
activates immediately. The following rule on the other hand, must wait for 10 seconds before
activating, since it may take up to 10 seconds for the sprinklers to activate:

Example 8.2. a rule that automatically delays activation due to temporal
constraints

rule "Sound the alarnt
when
$f : FireDetected()
not (SprinklerActivated(this after[0Os, 10s] $f))
t hen
/1 sound the alarm
end

This behaviour allows the engine to keep consistency when dealing with negative patterns and
temporal constraints at the same time. The above would be the same as writing the rule as below,
but does not burden the user to calculate and explicitly write the appropriate duration parameter:

Example 8.3. same rule with explicit duration parameter

rul e "Sound the alarnf

322

Complex Event Processing

duration(10s)
when

$f : FireDetected()

not (SprinklerActivated(this after[O0s, 10s] $f))
then

/1 sound the alarm
end

The following rule expects every 10 seconds at least one “Heartbeat” event, if not the rule fires.
The special case in this rule is that we use the same type of the object in the first pattern and in
the negative pattern. The negative pattern has the temporal constraint to wait between 0 to 10
seconds before firing and it excludes the Heartbeat bound to $h. Excluding the bound Heartbeat
is important since the temporal constraint [0s, ...] does not exclude by itself the bound event $h
from being matched again, thus preventing the rule to fire.

Example 8.4. excluding bound events in negative patterns

rule "Sound the alarnt
when
$h: Heartbeat() fromentry-point "MonitoringStreant
not(Heartbeat(this != $h, this after[0s,10s] $h) fromentry-point "MonitoringStreant)
then
/1 Sound the alarm
end

8.5. Session Clock

Reasoning over time requires a reference clock. Just to mention one example, if a rule reasons
over the average price of a given stock over the last 60 minutes, how the engine knows what stock
price changes happened over the last 60 minutes in order to calculate the average? The obvious
response is: by comparing the timestamp of the events with the "current time". How the engine
knows what time is now? Again, obviously, by querying the Session Clock.

The session clock implements a strategy pattern, allowing different types of clocks to be plugged
and used by the engine. This is very important because the engine may be running in an elements
of different scenarios that may require different clock implementations. Just to mention a few:

* Rules testing: testing always requires a controlled environment, and when the tests include
rules with temporal constraints, it is necessary to not only control the input rules and facts, but
also the flow of time.

* Regular execution: usually, when running rules in production, the application will require a real
time clock that allows the rules engine to react immediately to the time progression.

* Special environments: specific environments may have specific requirements on time control.
Cluster environments may require clock synchronization through heart beats, or JEE environ-
ments may require the use of an AppServer provided clock, etc.

323

Complex Event Processing

* Rules replay or simulation: to replay scenarios or simulate scenarios it is necessary that the
application also controls the flow of time.

8.5.1. Available Clock Implementations

Drools 5 provides 2 clock implementations out of the box. The default real time clock, based on
the system clock, and an optional pseudo clock, controlled by the application.

8.5.1.1. Real Time Clock

By default, Drools uses a real time clock implementation that internally uses the system clock to
determine the current timestamp.

To explicitly configure the engine to use the real time clock, just set the session configuration
parameter to real time:

Ki eSessi onConfiguration config = KieServices. Factory. get().newKi eSessi onConfi guration();
config.setOption(C ockTypeOption.get("realtine"));

8.5.1.2. Pseudo Clock

Drools also offers out of the box an implementation of a clock that is controlled by the application
that is called Pseudo Clock. This clock is specially useful for unit testing temporal rules since it
can be controlled by the application and so the results become deterministic.

To configure the pseudo session clock, do:

Ki eSessi onConfi guration config = KieServices. Factory. get().newKi eSessi onConfi guration();
config.setOption(O ockTypeOption. get("pseudo"));

As an example of how to control the pseudo session clock:

Ki eSessi onConfi guration config = KieServices. Factory. get().newKi eSessi onConfi guration();
conf.set Opti on(O ockTypeOption.get("pseudo"”));
Ki eSessi on sessi on = kbase. newKi eSessi on(conf, null);

Sessi onPseudoCl ock cl ock = session. get Sessi onC ock();

/1 then, while inserting facts, advance the clock as necessary:
Fact Handl e handl el = session.insert(tickl);

cl ock. advanceTi me(10, Ti neUnit.SECONDS);

Fact Handl e handl e2 = session.insert(tick2);

cl ock. advanceTi me(30, Ti nmeUnit.SECONDS);

Fact Handl e handl e3 = session.insert(tick3);

324

Complex Event Processing

8.6. Sliding Windows

Sliding Windows are a way to scope the events of interest by defining a window that is constantly
moving. The two most common types of sliding window implementations are time based windows
and length based windows.

The next sections will detail each of them.

Important

Sliding Windows are only available when running the engine in STREAM mode.
Check the Event Processing Mode section for details on how the STREAM mode
works.

Important

Sliding windows start to match immediately and defining a sliding window does
not imply that the rule has to wait for the sliding window to be "full* in order to
match. For instance, a rule that calculates the average of an event property on a
window:length(10) will start calculating the average immediately, and it will start at
0 (zero) for no-events, and will update the average as events arrive one by one.

8.6.1. Sliding Time Windows

Sliding Time Windows allow the user to write rules that will only match events occurring in the
last X time units.

For instance, if the user wants to consider only the Stock Ticks that happened in the last 2 minutes,
the pattern would look like this:

St ockTi ck() over wi ndow tine(2m)

Drools uses the "over" keyword to associate windows to patterns.

On a more elaborate example, if the user wants to sound an alarm in case the average temperature
over the last 10 minutes read from a sensor is above the threshold value, the rule would look like:

Example 8.5. aggregating values over time windows

rule " Sound t he alarm in case tenperature ri ses above threshol d"when
Tenper at ureThreshol d($max : max) Nunber (doubl eVal ue > $nax) from accunul at e(
Sensor Readi ng($tenp : tenperature) over w ndow tinme(10m), average($tenp))then

/1 sound the al arnmend

325

Complex Event Processing

above threshol d"when Tenper at ur eThr eshol d($max

D omax) Nunber (doubl eVal ue > $max

) from accumnul at e(Sensor Readi ng($tenp : tenperature) over
wi ndow: ti me(10m), aver age(

$tenmp

))then 11

sound

The engine will automatically disregard any SensorReading older than 10 minutes and keep the
calculated average consistent.

Important

Please note that time based windows are considered when calculating the interval
an event remains in the working memaory before being expired, but an event falling
off a sliding window does not mean by itself that the event will be discarded from
the working memory, as there might be other rules that depend on that event. The
engine will discard events only when no other rules depend on that event and the
expiration policy for that event type is fulfilled.

8.6.2. Sliding Length Windows

Sliding Length Windows work the same way as Time Windows, but consider events based on
order of their insertion into the session instead of flow of time.

For instance, if the user wants to consider only the last 10 RHT Stock Ticks, independent of how
old they are, the pattern would look like this:

St ockTi ck(conpany == "RHT") over wi ndow | ength(10)

As you can see, the pattern is similar to the one presented in the previous section, but instead of
using window:time to define the sliding window, it uses window:length.

Using a similar example to the one in the previous section, if the user wants to sound an alarm
in case the average temperature over the last 100 readings from a sensor is above the threshold
value, the rule would look like:

Example 8.6. aggregating values over length windows

rule "Sound the alarm in case tenperature rises above threshol d"when
Tenper atureThreshol d($max : max) Nunber (doubl evVal ue > $max) from accumul at e(
Sensor Readi ng($tenp : tenperature) over w ndow: |ength(100), average($tenp))then

/1 sound the al armend

above t hreshol d"when Tenper at ur eThr eshol d($nmax

326

Complex Event Processing

©omex) Nunber (doubl eVal ue > $nax

) from accumnul at e(Sensor Readi ng($tenp : tenperature) over
wi ndow: | engt h(100), aver age(

$tenp

))then 11

sound

The engine will keep only consider the last 100 readings to calculate the average temperature.

Important

Please note that falling off a length based window is not criteria for event expiration
in the session. The engine disregards events that fall off a window when calculat-
ing that window, but does not remove the event from the session based on that
condition alone as there might be other rules that depend on that event.

Important

Please note that length based windows do not define temporal constraints for event
expiration from the session, and the engine will not consider them. If events have
no other rules defining temporal constraints and no explicit expiration policy, the
engine will keep them in the session indefinitely.

8.7. Streams Support

Most CEP use cases have to deal with streams of events. The streams can be provided to the
application in various forms, from JMS queues to flat text files, from database tables to raw sockets
or even through web service calls. In any case, the streams share a common set of characteristics:

« events in the stream are ordered by a timestamp. The timestamp may have different semantics
for different streams but they are always ordered internally.

» volumes of events are usually high.

« atomic events are rarely useful by themselves. Usually meaning is extracted from the correlation
between multiple events from the stream and also from other sources.

« streams may be homogeneous, i.e. contain a single type of events, or heterogeneous, i.e. con-
tain multiple types of events.

Drools generalized the concept of a stream as an "entry point" into the engine. An entry point is for
drools a gate from which facts come. The facts may be regular facts or special facts like events.

In Drools, facts from one entry point (stream) may join with facts from any other entry point or
event with facts from the working memory. Although, they never mix, i.e., they never lose the

327

Complex Event Processing

reference to the entry point through which they entered the engine. This is important because one
may have the same type of facts coming into the engine through several entry points, but one
fact that is inserted into the engine through entry point A will never match a pattern from a entry
point B, for example.

8.7.1. Declaring and Using Entry Points

Entry points are declared implicitly in Drools by directly making use of them in rules. l.e. referencing
an entry point in a rule will make the engine, at compile time, to identify and create the proper
internal structures to support that entry point.

So, for instance, lets imagine a banking application, where transactions are fed into the system
coming from streams. One of the streams contains all the transactions executed in ATM machines.
So, if one of the rules says: a withdraw is authorized if and only if the account balance is over the
requested withdraw amount, the rule would look like:

Example 8.7. Example of Stream Usage

rul e "aut horize wi t hdraw'when W t hdr awRequest ($ai : accountld, $am: anount) fromentry-point
"ATM St r eant' Checki ngAccount (account|d == $ai, bal ance > $am)then // aut horize withdrawend

wi t hdr aw' when W t hdr awRequest ($ai : accountld, $am: anpunt) from entry-point
"ATM St reant Checki ngAccount (accountld == $ai, bal ance >
$am
)t hen /1
aut hori ze

In the previous example, the engine compiler will identify that the pattern is tied to the entry point
"ATM Stream" and will both create all the necessary structures for the rulebase to support the
"ATM Stream" and will only match WithdrawRequests coming from the "ATM Stream". In the
previous example, the rule is also joining the event from the stream with a fact from the main
working memory (CheckingAccount).

Now, lets imagine a second rule that states that a fee of $2 must be applied to any account for
which a withdraw request is placed at a bank branch:

Example 8.8. Using a different Stream

rule "apply fee on w thdraws on branches"when W t hdr awRequest ($ai : accountld, processed
== true) from entry-point "Branch Streant Checki ngAccount (accountld == $ai)then 11
apply a $2 fee on the accountend

br anches" when W t hdr awRequest ($ai : accountld, processed == true) from entry-point
"Branch Streant Checki ngAccount (accountld ==

$ai

)t hen /1 apply a $2 fee on

t he

328

Complex Event Processing

The previous rule will match events of the exact same type as the first rule (WithdrawRequest),
but from two different streams, so an event inserted into "ATM Stream" will never be evaluated
against the pattern on the second rule, because the rule states that it is only interested in patterns
coming from the "Branch Stream".

So, entry points, besides being a proper abstraction for streams, are also a way to scope facts
in the working memory, and a valuable tool for reducing cross products explosions. But that is a
subject for another time.

Inserting events into an entry point is equally simple. Instead of inserting events directly into the
working memory, insert them into the entry point as shown in the example below:

Example 8.9. Inserting facts into an entry point

/| create your rul ebase and your session as usual
Ki eSessi on session = ...

/1 get a reference to the entry point
Ent ryPoi nt at nfStream = sessi on. get EntryPoi nt ("ATM Streant);

/1 and start inserting your facts into the entry point
atnfStreaminsert(aWthdrawRequest);

The previous example shows how to manually insert facts into a given entry point. Although,
usually, the application will use one of the many adapters to plug a stream end point, like a IMS
queue, directly into the engine entry point, without coding the inserts manually. The Drools pipeline
API has several adapters and helpers to do that as well as examples on how to do it.

8.8. Memory Management for Events

Important

The automatic memory management for events is only performed when running
the engine in STREAM mode. Check the Event Processing Mode section for details
on how the STREAM mode works.

One of the benefits of running the engine in STREAM mode is that the engine can detect when
an event can no longer match any rule due to its temporal constraints. When that happens, the
engine can safely delete the event from the session without side effects and release any resources
used by that event.

There are basically 2 ways for the engine to calculate the matching window for a given event:

« explicitly, using the expiration policy

« implicitly, analyzing the temporal constraints on events

329

Complex Event Processing

8.8.1. Explicit expiration offset

The first way of allowing the engine to calculate the window of interest for a given event type is
by explicitly setting it. To do that, just use the declare statement and define an expiration for the
fact type:

Example 8.10. explicitly defining an expiration offset of 30 minutes for
StockTick events

decl are St ockTick @xpires(30m)end
St ockTi ck @xpires(30m

The above example declares an expiration offset of 30 minutes for StockTick events. After that
time, assuming no rule still needs the event, the engine will expire and remove the event from
the session automatically.

Important

An explicit expiration policy for a given event type overrides any inferred expiration
offset for that same type.

8.8.2. Inferred expiration offset

Another way for the engine to calculate the expiration offset for a given event is implicitly, by
analyzing the temporal constraints in the rules. For instance, given the following rule:

Example 8.11. example rule with temporal constraints

rule "correl ate orders"when $bo : BuyOrderEvent($id : id) $ae : AckEvent(id == $id,
this after[0, 10s] $bo)then /1 do sonet hi ngend

or der s" when $bo : BuyOrderEvent($id : id

) $ae : AckEvent(id == $id, this after[O0, 10s]
$bo

)then 11

do

Analyzing the above rule, the engine automatically calculates that whenever a BuyOrderEvent
matches, it needs to store it for up to 10 seconds to wait for matching AckEvent's. So, the implicit
expiration offset for BuyOrderEvent will be 10 seconds. AckEvent, on the other hand, can only
match existing BuyOrderEvent's, and so its expiration offset will be zero seconds.

The engine will make this analysis for the whole rulebase and find the offset for every event type.

330

Complex Event Processing

Important

An explicit expiration policy for a given event type overrides any inferred expiration
offset for that same type.

8.9. Temporal Reasoning

Temporal reasoning is another requirement of any CEP system. As discussed previously, one of
the distinguishing characteristics of events is their strong temporal relationships.

Temporal reasoning is an extensive field of research, from its roots on Temporal Modal Logic to its
more practical applications in business systems. There are hundreds of papers and thesis written
and approaches are described for several applications. Drools once more takes a pragmatic and
simple approach based on several sources, but specially worth noting the following papers:

[ALLENS1] Allen, J.F.. An Interval-based Representation of Temporal Knowledge. 1981.
[ALLENS83] Allen, J.F.. Maintaining knowledge about temporal intervals. 1983.

[BENNEOQ] Bennet, Brandon and Galton, Antony P.. A Unifying Semantics for Time and Events.
2005.

[YONEKO5] Yoneki, Eiko and Bacon, Jean. Unified Semantics for Event Correlation Over Time
and Space in Hybrid Network Environments. 2005.

Drools implements the Interval-based Time Event Semantics described by Allen, and represents
Point-in-Time Events as Interval-based evens with duration O (zero).

@ Note
For all temporal operator intervals, the "*" (star) symbol is used to indicate positive
infinity and the "-*" (minus star) is used to indicate negative infinity.

8.9.1. Temporal Operators

Drools implements all 13 operators defined by Allen and also their logical complement (negation).
This section details each of the operators and their parameters.

8.9.1.1. After

The after evaluator correlates two events and matches when the temporal distance from the cur-
rent event to the event being correlated belongs to the distance range declared for the operator.

Lets look at an example:

331

Complex Event Processing

$event A : EventA(this after[3nB0s, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventB
finished and the time when $eventA started is between (3 minutes and 30 seconds) and (4
minutes). In other words:

3nB0s <= $event A startTi nestanp - $event B. endTi meSt anp <= 4m

The temporal distance interval for the after operator is optional:

« If two values are defined (like in the example below), the interval starts on the first value and
finishes on the second.

« If only one value is defined, the interval starts on the value and finishes on the positive infinity.

« If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive
infinity.

$event A : EventA(this after[-3nBOs, -2m] $eventB)

$event A : EventA(this after[-3nB0s, -2m] $eventB) $eventA : EventA(this
after[-2m -3nBOs] $eventB)
) $eventA : EventA(this after[-2m -3n80s] $eventB

332

Complex Event Processing

Event A(this after $sonmeDate)

8.9.1.2. Before

The before evaluator correlates two events and matches when the temporal distance from the
event being correlated to the current correlated belongs to the distance range declared for the
operator.

Lets look at an example:

$event A . Event A(this before[3nB0Os, 4m] $eventB)

The previous pattern will match if and only if the temporal distance between the time when $eventA
finished and the time when $eventB started is between (3 minutes and 30 seconds) and (4
minutes). In other words:

3nB0s <= $eventB. start Ti nestanp - $event A endTi meStanp <= 4m

The temporal distance interval for the before operator is optional:

« If two values are defined (like in the example below), the interval starts on the first value and
finishes on the second.

* If only one value is defined, then the interval starts on the value and finishes on the positive
infinity.

« If no value is defined, it is assumed that the initial value is 1ms and the final value is the positive
infinity.

$event A : Event A(this before[-3n80s, -2m] $eventB)

333

Complex Event Processing

$event A : EventA(this before[-3nBOs, -2m] $eventB) $eventA : EventA(this
before[-2m -3n80s] $eventB)
) $eventA : EventA(this before[-2m -3nB0s] $eventB

Event A(this after $soneDate)

8.9.1.3. Coincides

The coincides evaluator correlates two events and matches when both happen at the same time.
Optionally, the evaluator accept thresholds for the distance between events' start and finish time-
stamps.

Lets look at an example:

$event A : Event A(this coincides $eventB)

The previous pattern will match if and only if the start timestamps of both $eventA and $eventB
are the same AND the end timestamp of both $eventA and $eventB also are the same.

Optionally, this operator accepts one or two parameters. These parameters are the thresholds for
the distance between matching timestamps.
« If only one parameter is given, it is used for both start and end timestamps.

« If two parameters are given, then the first is used as a threshold for the start timestamp and the
second one is used as a threshold for the end timestamp.

In other words:

334

Complex Event Processing

$event A : Event A(this coincides[15s, 10s] $eventB)

Above pattern will match if and only if:

abs($event A startTimestanp - $eventB.startTinestanp) <= 15s &&
abs($event A endTi mestanp - $event B. endTi mestanp) <= 10s

Warning

It makes no sense to use negative interval values for the parameters and the engine
will raise an error if that happens.

: Note
i

The after, before and coincides operators can be used to define constraints be-
tween events, java.util.Date attributes, and long attributes (interpreted as time-
stamps since epoch) in any combination. Example:

Event A(this after $soneDate)

8.9.1.4. During

The during evaluator correlates two events and matches when the current event happens during
the occurrence of the event being correlated.

Lets look at an example:

$event A : Event A(this during $eventB)

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes
before $eventB finishes.

In other words:

$event B.start Ti nestanp < $event A start Ti mestanp <= $event A. endTi nestanp < $event B. endTi nest anp

The during operator accepts 1, 2 or 4 optional parameters as follow:

335

Complex Event Processing

« If one value is defined, this will be the maximum distance between the start timestamp of both
event and the maximum distance between the end timestamp of both events in order to operator
match. Example:

$event A : EventA(this during[5s] $eventB)

Will match if and only if:

0 < $eventA startTinestanp - $eventB.startTi nestanp <= 5s &&
0 < $eventB. endTi nestanp - $event A. endTi nestanp <= 5s

* If two values are defined, the first value will be the minimum distance between the timestamps
of both events, while the second value will be the maximum distance between the timestamps
of both events. Example:

$event A : EventA(this during[5s, 10s] $eventB)

Will match if and only if:

5s <= $event A startTi mestanp - $eventB.startTi nestanp <= 10s &&
5s <= $event B. endTi nestanp - $event A endTi mest anp <= 10s

« If four values are defined, the first two values will be the minimum and maximum distances
between the start timestamp of both events, while the last two values will be the minimum and
maximum distances between the end timestamp of both events. Example:

$event A : EventA(this during[2s, 6s, 4s, 10s] $eventB)

Will match if and only if:

2s <= $event A startTimestanp - $eventB.startTinestanp <= 6s &&
4s <= $event B. endTi nestanp - $event A. endTi mestanp <= 10s

8.9.1.5. Finishes

The finishes evaluator correlates two events and matches when the current event's start time-
stamp happens after the correlated event's start timestamp, but both end timestamps occur at
the same time.

336

Complex Event Processing

Lets look at an example:

$event A : Event A(this finishes $eventB)

The previous pattern will match if and only if the $eventA starts after $eventB starts and finishes
at the same time $eventB finishes.

In other words:

$event B. start Ti mestanp < $event A startTi mestanp &%
$event A. endTi mest anp == $event B. endTi nest anp

The finishes evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of both events in order for the operator to match. Example:

$event A . EventA(this finishes[5s] $eventB)

Will match if and only if:

$event B. start Ti nestanp < $event A. start Ti nestanp &&
abs($event A endTi nestanp - $eventB. endTi mestanmp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.6. Finished By

The finishedby evaluator correlates two events and matches when the current event start time-
stamp happens before the correlated event start timestamp, but both end timestamps occur at the
same time. This is the symmetrical opposite of finishes evaluator.

Lets look at an example:

$event A . Event A(this finishedby $eventB)

The previous pattern will match if and only if the $eventA starts before $eventB starts and finishes
at the same time $eventB finishes.

337

Complex Event Processing

In other words:

$event A start Ti mest anp < $eventB. start Ti nestanp &&
$event A. endTi mest anp == $event B. endTi nest anp

The finishedby evaluator accepts one optional parameter. If it is defined, it determines the maxi-
mum distance between the end timestamp of both events in order for the operator to match. Ex-
ample:

$event A : Event A(this finishedby[5s] $eventB)

Will match if and only if:

$event A start Ti mestanp < $eventB. start Ti mestanmp &&
abs($event A endTi nestanp - $eventB. endTi mestanmp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.7. Includes

The includes evaluator correlates two events and matches when the event being correlated hap-
pens during the current event. It is the symmetrical opposite of during evaluator.

Lets look at an example:

$event A : Event A(this includes $eventB)

The previous pattern will match if and only if the $eventB starts after $eventA starts and finishes
before $eventA finishes.

In other words:

$event A. start Ti mestanp < $event B. start Ti mest anp <= $event B. endTi nest anp < $event A. endTi nest anp

The includes operator accepts 1, 2 or 4 optional parameters as follow:

338

Complex Event Processing

« If one value is defined, this will be the maximum distance between the start timestamp of both
event and the maximum distance between the end timestamp of both events in order to operator
match. Example:

$event A : EventA(this includes[5s] $eventB)

Will match if and only if:

0 < $eventB.startTinestanp - $event A startTi nestanp <= 55 &&
0 < $event A endTi nestanp - $event B. endTi nestanp <= 5s

« If two values are defined, the first value will be the minimum distance between the timestamps
of both events, while the second value will be the maximum distance between the timestamps
of both events. Example:

$event A : EventA(this includes[5s, 10s] $eventB)

Will match if and only if:

5s <= $eventB.startTi mestanp - $event A startTi mestanp <= 10s &&
5s <= $event A endTi nestanp - $event B. endTi mest anp <= 10s

« If four values are defined, the first two values will be the minimum and maximum distances
between the start timestamp of both events, while the last two values will be the minimum and
maximum distances between the end timestamp of both events. Example:

$event A : EventA(this includes[2s, 6s, 4s, 10s] $eventB)

Will match if and only if:

2s <= $eventB.startTi mestanp - $event A startTi nestanp <= 6s &&
4s <= $event A. endTi nestanp - $event B. endTi mest anp <= 10s

8.9.1.8. Meets

The meets evaluator correlates two events and matches when the current event's end timestamp
happens at the same time as the correlated event's start timestamp.

Lets look at an example:

339

Complex Event Processing

$event A . Event A(this neets $eventB)

The previous pattern will match if and only if the $eventA finishes at the same time $eventB starts.

In other words:

abs($eventB.startTi mestanp - $event A endTi nestanp) == 0

The meets evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of current event and the start timestamp of the correlated
event in order for the operator to match. Example:

$event A : EventA(this meets[5s] $eventB)

Will match if and only if:

abs($eventB.startTi mestanp - $event A endTi nestanp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.9. Met By

The metby evaluator correlates two events and matches when the current event's start timestamp
happens at the same time as the correlated event's end timestamp.

Lets look at an example:

$event A : Event A(this netby $eventB)

The previous pattern will match if and only if the $eventA starts at the same time $eventB finishes.

In other words:

abs($event A startTi mestanp - $eventB. endTi nestanp) == 0

340

Complex Event Processing

The metby evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the end timestamp of the correlated event and the start timestamp of the current
event in order for the operator to match. Example:

$event A : EventA(this nmetby[5s] $eventB)

Will match if and only if:

abs($eventA. startTimestanp - $eventB. endTi nestanp) <= 5s

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.10. Overlaps

The overlaps evaluator correlates two events and matches when the current event starts before
the correlated event starts and finishes after the correlated event starts, but before the correlated
event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$event A : EventA(this overlaps $eventB)

The previous pattern will match if and only if:

$event A. start Ti nestanp < $eventB.start Ti mestanp < $event A. endTi nestanp < $event B. endTi nest anp

The overlaps operator accepts 1 or 2 optional parameters as follow:

* If one parameter is defined, this will be the maximum distance between the start timestamp of
the correlated event and the end timestamp of the current event. Example:

$event A : Event A(this overlaps[5s] $eventB)

Will match if and only if:

341

Complex Event Processing

$event A. start Ti nest anp < $event B. start Ti nest anp < $event A. endTi nest anp < $event B. endTi mest anp
&&
0 <= $event A. endTi nestanp - $eventB.startTi mestanp <= 5s

« If two values are defined, the first value will be the minimum distance and the second value
will be the maximum distance between the start timestamp of the correlated event and the end
timestamp of the current event. Example:

$event A : EventA(this overlaps[5s, 10s] $eventB)

Will match if and only if:

$event A. start Ti nest anp < $event B. start Ti nest anp < $event A. endTi nest anp < $event B. endTi mest anp
&&
5s <= $event A. endTi nestanp - $eventB.start Ti nestanp <= 10s

8.9.1.11. Overlapped By

The overlappedby evaluator correlates two events and matches when the correlated event starts
before the current event starts and finishes after the current event starts, but before the current
event finishes. In other words, both events have an overlapping period.

Lets look at an example:

$event A : Event A(this overl appedby $eventB)

The previous pattern will match if and only if:

$event B. start Ti nestanp < $event A start Ti mestanp < $event B. endTi nestanp < $event A endTi mest anp

The overlappedby operator accepts 1 or 2 optional parameters as follow:

« If one parameter is defined, this will be the maximum distance between the start timestamp of
the current event and the end timestamp of the correlated event. Example:

$event A : EventA(this overlappedby[5s] $eventB)

Will match if and only if:

342

Complex Event Processing

$event B. start Ti nest anp < $event A. start Ti nest anp < $event B. endTi nest anp < $event A. endTi mest anp
&&
0 <= $eventB. endTi nestanp - $event A startTi mestanp <= 5s

« If two values are defined, the first value will be the minimum distance and the second value
will be the maximum distance between the start timestamp of the current event and the end
timestamp of the correlated event. Example:

$event A : Event A(this overl appedby[5s, 10s] $eventB)

Will match if and only if:

$event B. start Ti nest anp < $event A. start Ti nest anp < $event B. endTi mest anp < $event A. endTi mest anp
&&
5s <= $event B. endTi nestanp - $event A. start Ti nestanp <= 10s

8.9.1.12. Starts

The starts evaluator correlates two events and matches when the current event's end timestamp
happens before the correlated event's end timestamp, but both start timestamps occur at the
same time.

Lets look at an example:

$event A : EventA(this starts $eventB)

The previous pattern will match if and only if the $eventA finishes before $eventB finishes and
starts at the same time $eventB starts.

In other words:

$event A start Ti mestanp == $event B. start Ti nestanp &&
$event A endTi mest anp < $event B. endTi nest anp

The starts evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the start timestamp of both events in order for the operator to match. Example:

$event A . EventA(this starts[5s] $eventB)

343

Complex Event Processing

Will match if and only if:

abs($event A startTinmestanp - $eventB.startTimestanp) <= 5s &&
$event A. endTi nest anp < $event B. endTi nest anp

A Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

8.9.1.13. Started By

The startedby evaluator correlates two events and matches when the correlating event's end
timestamp happens before the current event's end timestamp, but both start timestamps occur at
the same time. Lets look at an example:

$event A . Event A(this startedby $eventB)

The previous pattern will match if and only if the $eventB finishes before $eventA finishes and
starts at the same time $eventB starts.

In other words:

$event A start Ti mest anp == $event B. start Ti nestanp &&
$event A endTi mest anp > $event B. endTi nest anp

The startedby evaluator accepts one optional parameter. If it is defined, it determines the maximum
distance between the start timestamp of both events in order for the operator to match. Example:

$event A : EventA(this starts[5s] $eventB)

Will match if and only if:

abs($event A startTinmestanp - $eventB.startTinestanp) <= 5s &&
$event A. endTi mest anp > $event B. endTi mest anp

344

Complex Event Processing

Warning

It makes no sense to use a negative interval value for the parameter and the engine
will raise an exception if that happens.

345

Part IV. Drools Integration

Integration Documentation

Chapter 9. Drools Commands

9.1. API

XML marshalling/unmarshalling of the Drools Commands requires the use of special classes,
which are going to be described in the following sections.

The following urls show sample script examples for jaxb, xstream and json marshalling using:

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

* http://fisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/xstream.mvt?r=HEAD

9.1.1. XStream

To use the XStream commands marshaller you need to use the DroolsHelperProvider to obtain
an XStream instance. We need to use this because it has the commands converters registered.

« Marshalling
BatchExecutionHelperProviderimpl.newXStreamMarshaller().toXML(command);
* Unmarshalling

BatchExecutionHelperProviderimpl.newXStreamMarshaller().fromXML(xml)

9.1.2. JSON

JSON API to marshalling/unmarshalling is similar to XStream API:

« Marshalling
BatchExecutionHelper.newJSonMarshaller().toXML(command);
* Unmarshalling

BatchExecutionHelper.newJSonMarshaller().fromXML(xml)

9.1.3. JAXB

There are two options for using JAXB, you can define your model in an XSD file or you can have
a POJO model. In both cases you have to declare your model inside JAXBContext, and in order

347

Drools Commands

to do that you need to use Drools Helper classes. Once you have the JAXBContext you need to
create the Unmarshaller/Marshaller as needed.

9.1.3.1. Using an XSD file to define the model

With your model defined in a XSD file you need to have a KnowledgeBase that has your XSD
model added as a resource.

To do this, the XSD file must be added as a XSD ResourceType into the KnowledgeBuilder. Finally
you can create the JAXBContext using the KnowledgeBase created with the KnowledgeBuilder

Options xjcOpts = new Options();

Xj cOpt s. set SchemaLanguage(Language. XMLSCHEMA,) ;

JaxbConfiguration jaxbConfigurati on = Know edgeBui | der Fact ory. newJaxbConfi guration(xjcOpts, "xsd');

kbui | der . add(Resour ceFact ory. newd assPat hResour ce(" person. xsd", getd ass()), ResourceType. XSD, jaxbConfi guration);
Know edgeBase kbase = kbui | der. newkKnow edgeBase();

List<String> classesName = new ArrayList<String>();
cl assesNane. add("org. drool s. conpi | er. test. Person");

JAXBCont ext j axbCont ext = Know edgeBui | der Hel per. newJAXBCont ext (cl assesNane. t oArray(new String[cl assesNane. si ze()]

9.1.3.2. Using a POJO model

In this case you need to use DroolsJaxbHelperProviderimpl to create the JAXBContext. This class
has two parameters:

1. classNames: A List with the canonical name of the classes that you want to use in the mar-
shalling/unmarshalling process.

2. properties: JAXB custom properties

Li st<String> classNames = new Arraylist<String>();

cl assNanes. add("org. drool s. conpi | er. test. Person");

JAXBCont ext j axbCont ext = Drool sJaxbHel per Provi der | npl . creat eDr ool sJaxbCont ext (cl assNanmes, null);
Marshal | er marshall er = jaxbContext.createMarshaller();

9.2. Commands supported

Currently, the following commands are supported:

+ BatchExecutionCommand

* InsertObjectCommand

348

Drools Commands

RetractCommand

ModifyCommand

GetObjectCommand

InsertElementsCommand

FireAllRulesCommand

StartProcessCommand

SignalEventCommand

CompleteWorkltemCommand

AbortWorkltemCommand

QueryCommand

SetGlobalCommand

GetGlobalCommand

GetObjectsCommand

o

String xml = BatchExecuti onHel per. newXsSt r eamvar shal | er ().t oXM_(command) ;

349

Drools Commands

String xm = BatchExecuti onHel per. newJSonMarshal | er ().t oXM.(conmmand) ;

* JAXB

Marshal | er marshal |l er = jaxbContext.createMarshaller();
StringWiter xm = new StringWiter();

mar shal | er. set Property(Marshal | er. JAXB_FORMATTED _OUTPUT, true);
mar shal | er. mar shal (command, xm);

9.2.1. BatchExecutionCommand

 Description: The command that contains a list of commands, which will be sent and executed.

» Attributes

Table 9.1. BatchExecutionCommand attributes

Name Description required

lookup Sets the knowledge session | true
id on which the commands
are going to be executed

commands List of commands to be exe- | false
cuted

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecuti onCommrand() ;

comand. set Lookup(" ksessi onl");

I nsert Obj ect Command i nsert Obj ect Cormand = new | nsert Obj ect Conmand(new Person("j ohn", 25));
FireAl | Rul esCommand fireAll Rul esCommand = new FireAl | Rul esConmand();

comand. get Commands() . add(i nsert Obj ect Cormand) ;

comand. get Comrands() . add(fireAl | Rul esComand) ;

¢ XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<insert>
<org.drool s. conpi |l er.test. Person>

350

Drools Commands

<name>j ohn</ nane>
<age>25</ age>
</ org.drool s.conpiler.test.Person>
</insert>
<fire-all-rules/>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", " commands"
[{"insert":{"object":{"org.drools.conpiler.test.Person":{"name":"john", "age": 25}}}}
{"fire-all-rules":""}]}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert>
<obj ect xsi:type="person" xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance" >
<age>25</ age>
<nane>j ohn</ nane>
</ obj ect >
</insert>
<fire-all-rules max="-1"/>
</ bat ch- execut i on>

9.2.2. InsertObjectCommand

 Description: Insert an object in the knowledge session.

» Attributes

Table 9.2. InsertObjectCommand attributes

Name Description required
object The object to be inserted true
outldentifier Id to identify the FactHandle | false

created in the object insertion
and added to the execution
results

returnObject Boolean to establish if the ob- | false
ject must be returned in the

351

Drools Commands

Name Description required

execution results. Default val-
ue: true

entryPoint Entrypoint for the insertion false

Command creation

Li st <Conrmand> cnds = ArraylLi st <Conmand>()

Command i nsert Obj ect Command = CommandFact ory. newl nsert (new Person("john", 25), "john", false
cmds. add(i nsert Cbj ect Conmand)

Bat chExecuti onCommand conmand = CommandFact ory. cr eat eBat chExecuti on(cnds, "ksessionl")

XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<insert out-identifier="john" entry-point="ny streant’ return-object="false">
<org.drool s. conpi |l er.test. Person>
<nane>j ohn</ nane>
<age>25</ age>
</ org.drools. conpiler.test.Person>
</insert>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "commands": {"insert":{"entry-point":"nmy streant

{"org.drool s. conpi |l er.test. Person":{"nanme":"john", "age":25}}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert out-identifier="john" entry-point="ny streanm >
<obj ect xsi:type="person" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance" >
<age>25</ age>
<nane>j ohn</ nane>
</ obj ect >
</insert>
</ bat ch- executi on>

352

null);

Drools Commands

9.2.3. RetractCommand

« Description: Retract an object from the knowledge session.

» Attributes

Table 9.3. RetractCommand attributes

Name Description required

handle The FactHandle associated | true
to the object to be retracted

« Command creation: we have two options, with the same output result:

1. Create the Fact Handle from a string

Bat chExecut i onCommand conmand = new Bat chExecut i onConmmand()
command. set Lookup(" ksessi onl")

Retract Command retract Conmand = new Retract Conmand()

retract Coomand. set Fact Handl eFronBtri ng("123: 234: 345: 456: 567")
comand. get Commands() . add(retract Comrand) ;

2. Set the Fact Handle that you received when the object was inserted

Bat chExecut i onCommrand conmand = new Bat chExecut i onConmmand()
comand. set Lookup(" ksessi onl")

Ret ract Command retract Conmand = new Retract Command(f act Handl e)
command. get Commands() . add(r et r act Command)

« XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<retract fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- executi on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "comrands": {"retract": {"fact-
handl e": " 0: 234: 345: 456: 567"}}}}

353

Drools Commands

+ JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<retract fact-handl e="0:234: 345: 456: 567"/ >
</ bat ch- execut i on>

9.2.4. ModifyCommand

 Description: Allows you to modify a previously inserted object in the knowledge session.

» Attributes

Table 9.4. ModifyCommand attributes

Name Description required

handle The FactHandle associated | true
to the object to be retracted

setters List of setters object's modifi- | true
cations

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onCommand() ;
comand. set Lookup(" ksessi onl");

Modi f yCommand nodi f yCommand = new Modi f yCommand() ;

nodi f yCommand. set Fact Handl eFronSt ri ng(" 123: 234: 345: 456: 567") ;
Li st<Setter> setters = new ArrayList<Setter>();
setters.add(new Setterlnpl ("age", "30"));

nodi f yConmand. set Setters(setters);

comand. get Commands() . add(nodi f yConmmand) ;

e XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<nodi fy fact-handl e="0: 234: 345: 456: 567" >
<set accessor="age" val ue="30"/>
</ modi fy>
</ bat ch- execut i on>

354

Drools Commands

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"nodi fy": {"fact -

handl e": " 0: 234: 345: 456: 567", "setters": {"accessor": "age", "val ue":30}}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<bat ch- executi on | ookup="ksessi onl">
<nodi fy fact-handl e="0: 234: 345: 456: 567" >
<set val ue="30" accessor="age"/>

</ nmodi fy>
</ bat ch- execut i on>

9.2.5. GetObjectCommand

« Description: Used to get an object from a knowledge session

« Attributes

Table 9.5. GetObjectCommand attributes

created in the object insertion
and added to the execution
results

Name Description required
factHandle The FactHandle associated true
to the object to be retracted
outldentifier Id to identify the FactHandle | false

« Command creation

Bat chExecuti onCommand conmand = new Bat chExecut i onConmand() ;

command. set Lookup("ksessi onl");

Get Obj ect Conmand get Obj ect Command = new Get Obj ect Command() ;
get Obj ect Conmand. set Fact Handl eFronSt ri ng(" 123: 234: 345: 456: 567") ;
get Obj ect Conmand. set Qut I denti fier("john");

comand. get Commands() . add(get Obj ect Comrand) ;

« XML output

355

Drools Commands

e XStream

<bat ch- executi on | ookup="ksessi onl">

<get-obj ect fact-handl e="0:234: 345: 456: 567" out-identifier="john"/>

</ bat ch- execut i on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "commands": {"get-object": {"fact-
handl e": " 0: 234: 345: 456: 567", "out-identifier":"john"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<get -obj ect out-identifier="john" fact-handl e="0:234: 345: 456: 567"/ >

</ bat ch- executi on>

9.2.6. InsertElementsCommand

» Description: Used to insert a list of objects.

» Attributes

Table 9.6. InsertElementsCommand attributes

Name Description required
objects The list of objects to be insert- | true
ed on the knowledge session
outldentifier Id to identify the FactHandle | false
created in the object insertion
and added to the execution
results
returnObject Boolean to establish if the ob- | false
ject must be returned in the
execution results. Default val-
ue: true
entryPoint Entrypoint for the insertion false

356

Drools Commands

Command creation

Li st <Command> cnds = Arrayli st <Command>()

Li st <Cbj ect > obj ects = new ArrayLi st <Obj ect >()
obj ect s. add(new Person("john", 25))
obj ect s. add(new Person("sarah", 35))

Command i nsert El enent sCommand = CommandFact ory. newl nsert El enent s(obj ects)
cnds. add(i nsert El enent sConmmand)

Bat chExecut i onCommand conmmand = CommandFact ory. cr eat eBat chExecution(cnds, "ksessionl")

XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<insert-el ement s>
<org.drool s.conpiler.test.Person>
<nane>j ohn</ nane>
<age>25</ age>
</ org.drool s. conpiler.test.Person>
<org.drool s. conpi |l er.test. Person>
<nane>sar ah</ nane>
<age>35</ age>
</ org.drools. conpiler.test.Person>
</insert-el ement s>
</ bat ch- executi on>

» JSON

{"bat ch-execution": {"l| ookup": "ksessi onl", "comrands"

{"insert-elements": {"objects":[{"contai nedCb

ject":{"@l ass":"org. drool s. conpi |l er.test.Person", "nane":"john", "age": 25}}
{"contai nedCbj ect": {" @l ass": "Person", "nanme": "sarah", "age":35}}]1}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<insert-el ements return-objects="true">
<list>
<el ement xsi:type="person" xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" >
<age>25</ age>
<name>j ohn</ nane>
</ el enent >
<el ement xsi:type="person" xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >
<age>35</ age>

357

Drools Commands

<nanme>sar ah</ nane>
</ el enent >
<list>
</insert-el ement s>
</ bat ch- execut i on>

9.2.7. FireAllRulesCommand

» Description: Allow execution of the rules activations created.

» Attributes

Table 9.7. FireAllRulesCommand attributes

Name Description required

max The max number of rules ac- | false
tivations to be executed. de-
fault is -1 and will not put any
restriction on execution

outldentifier Add the number of rules acti- | false
vations fired on the execution
results

agendaFilter Allow the rules execution us- | false

ing an Agenda Filter

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup(" ksessi onl");

FireAl | Rul esCommand fireAll Rul esCommand = new FireAl | Rul esConmand();
fireAl | Rul esCommand. set Max(10) ;

fireAl | Rul esComrand. set Qut I dentifier("firedActivations");

command. get Commands() . add(fireAl | Rul esConmand) ;

« XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<fire-all-rules max="10" out-identifier="firedActivations"/>
</ bat ch- execut i on>

* JSON

358

Drools Commands

{"bat ch-execution": {"l ookup": "ksessi onl", "commands": {"fire-all-rul es":{"max": 10, "out -
identifier":"firedActivations"}}}}

+ JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<fire-all-rules out-identifier="firedActivations" max="10"/>
</ bat ch- execut i on>

9.2.8. StartProcessCommand

» Description: Allows you to start a process using the ID. Also you can pass parameters and initial
data to be inserted.

» Attributes

Table 9.8. StartProcessCommand attributes

Name Description required
processlid The ID of the process to be | true
started
parameters A Map<String, Object> to | false

pass parameters in the
process startup

data A list of objects to be inserted | false
in the knowledge session be-
fore the process startup

« Command creation

Bat chExecut i onCommrand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup("ksessi onl");

St art ProcessCommand st art ProcessCommand = new Start ProcessComrand() ;
start ProcessCommand. set Process! d("org. drool s. t ask. processOne");
command. get Commands() . add(st art ProcessConmand) ;

* XML output

e XStream

359

Drools Commands

<bat ch- executi on | ookup="ksessi onl">
<start-process processld="org.drools.task.processOne"/>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commuands": {"start-process": {"process-
id"':"org.drool s.task. processOne"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<start-process processld="org.drools.task.processOne">
<par aneter/ >
</start-process>
</ bat ch- executi on>

9.2.9. SignalEventCommand

» Description: Send a signal event.

« Attributes

Table 9.9. SignalEventCommand attributes

Name Description required
event-type true
processinstanceld false
event false

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup("ksessi onl");

Si gnal Event Command si gnal Event Conmand = new Si gnal Event Conmand() ;
si gnal Event Command. set Processl nst ancel d(1001) ;

si gnal Event Command. set Event Type("start");

si gnal Event Command. set Event (new Person("john", 25));

command. get Commands() . add(si gnal Event Conmand) ;

* XML output

360

Drools Commands

e XStream

<bat ch- executi on | ookup="ksessi onl">
<signal -event process-instance-id="1001" event-type="start">
<org. drool s. pi pel i ne. canel . Per son>
<nane>j ohn</ nane>
<age>25</ age>
</ org. drool s. pi peline. canel . Per son>
</ si gnal - event >
</ bat ch- execut i on>

JSON

{"bat ch-execution":{"l ookup": "ksessi onl", "conmrands": {"si gnal -event": {"process-

i nstance-id": 1001, "@uvent-type":"start","event-type":"start", "object"

{"org.drool s. pi pel i ne. canel . Person": {"nane":"j ohn", "age": 25}}}}}}
JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<si gnal -event event-type="start" process-instance-id="1001">
<event xsi:type="person" xml ns:xsi="http://ww.w3.org/ 2001/ XM_.Schena-i nst ance">
<age>25</ age>
<nane>j ohn</ nanme>
</ event >
</ si gnal - event >
</ bat ch- executi on>

9.2.10. CompleteWorkltemCommand

 Description: Allows you to complete a Workltem.

» Attributes

Table 9.10. CompleteWorkltemCommand attributes

Name Description required
workltemid The ID of the Workltem to be | true
completed
results false

Command creation

361

Drools Commands

Bat chExecut i onCommrand conmand = new Bat chExecut i onConmmand()
comand. set Lookup(" ksessi onl")

Conpl et eWor kl t enCommand conpl et eWor ki t enCommand = new Conpl et eWor ki t enCommand() ;
conpl et eWor kl t enCommand. set Wrkltem d(1001)

comand. get Commands() . add(conpl et eWor kil t emConmand)

e XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<conpl et e-wor k-item i d="1001"/>
</ bat ch- executi on>

* JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commuands": {"conpl ete-work-itent:{"id":1001}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- execution | ookup="ksessi onl">

<conpl et e-work-itemid="1001"/>
</ bat ch- executi on>

9.2.11. AbortWorkltemCommand

» Description: Allows you abort an Workltem. The same as
session.getWorkltemManager().abortWorkltem(workltemld)

» Attributes

Table 9.11. AbortWorkltemCommand attributes

Name Description required
workltemid The ID of the Workltem to be | true
completed

362

Drools Commands

« Command creation

Bat chExecuti onCommand conmand = new Bat chExecut i onConmand()
command. set Lookup("ksessi onl")

Abor t Wor kI t enConmand abor t Wor kI t emConmand = new Abor t Wor kI t enConmand()
abor t Wor kIl t emConmand. set Wor kil t emd d(1001)

comand. get Commands() . add(abor t Wor kIl t emConmand)

* XML output

¢ XStream

<bat ch- executi on | ookup="ksessi onl">
<abort-work-itemid="1001"/>
</ bat ch- executi on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessionl", "commands": {"abort-work-iteni:{"id":1001}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>

<bat ch- executi on | ookup="ksessi onl">
<abort-work-itemid="1001"/>

</ bat ch- executi on>

9.2.12. QueryCommand

« Description: Executes a query defined in knowledge base.

» Attributes

Table 9.12. QueryCommand attributes

Name Description required
name The query name true
outldentifier The identifier of the query re- | false
sults. The query results are

363

Drools Commands

Name Description required
going to be added in the exe-
cution results with this identi-
fier
arguments A list of objects to be passed | false
as a query parameter

« Command creation

Bat chExecut i onCommand conmand
comand. set Lookup("ksessi onl")

Quer yCommand queryCommand = new Quer yConmand()
quer yCommand. set Nane(" per sons")

quer yConmand. set Qut | denti fi er ("persons")
comrand. get Commands() . add(quer yConmand)

« XML output

* XStream

= new Bat chExecuti onConmand() ;

<bat ch- executi on | ookup="ksessi onl">

<query out-identifier="persons" nane="persons"/>

</ bat ch- execut i on>

+ JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {" query": {"out -

identifier

* JAXB

. persons’,

name" :

persons"}}}}

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<query name="persons" out-identifier="persons"/>
</ bat ch- execut i on>

9.2.13. SetGlobalCommand

 Description: Allows you to set a global.

» Attributes

364

Drools Commands

Table 9.13. SetGlobalCommand attributes

Name Description required

identifier The identifier of the global de- | true
fined in the knowledge base

object The object to be set into the | false
global
out A boolean to add, or not, the | false

set global result into the exe-
cution results

outldentifier The identifier of the global ex- | false
ecution result

« Command creation

Bat chExecut i onConmand command = new Bat chExecut i onConmand()
command. set Lookup("ksessi onl")

Set d obal Cormand set G obal Conmand = new Set G obal Command()
set d obal Conmand. set | denti fier("hel per")

set d obal Conmmand. set Obj ect (new Person("kyle", 30))

set d obal Conmmand. set Qut (true);

set d obal Command. set Qut | denti fier ("output™)

comand. get Commands() . add(set d obal Comrand)

« XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<set-global identifier="helper" out-identifier="output">
<org.drool s. conpi |l er.test. Person>
<name>kyl e</ nane>
<age>30</ age>
</ org.drools. conpiler.test.Person>
</ set - gl obal >
</ bat ch- executi on>

* JSON

{"bat ch-execution": {"l ookup": "ksessi onl", "comrands": {"set -

global ":{"identifier":"hel per","out-identifier":"output","object
{"org.drool s.conpiler.test.Person":{"nane": "kyl e", "age":30}}}}}}

+ JAXB

365

Drools Commands

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">
<set-global out="true" out-identifier="output" identifier="helper">
<obj ect xsi:type="person" xmns:xsi="http://ww.w3. org/ 2001/ XM_Schena-i nst ance" >
<age>30</ age>
<name>kyl e</ nane>
</ obj ect >
</ set - gl obal >
</ bat ch- executi on>

9.2.14. GetGlobalCommand

» Description: Allows you to get a global previously defined.

» Attributes

Table 9.14. GetGlobalCommand attributes

Name Description required

identifier The identifier of the global de- | true
fined in the knowledge base

outldentifier The identifier to be used in | false
the execution results

« Command creation

Bat chExecut i onCommand conmand = new Bat chExecut i onComrand() ;
comand. set Lookup("ksessi onl");

Get A obal Command get d obal Command = new Get d obal Command() ;
get A obal Command. set | dentifier("hel per");

get A obal Commrand. set Qut I denti fi er ("hel per Qutput");

comrand. get Commands() . add(get A obal Comrand) ;

* XML output

e XStream

<bat ch- executi on | ookup="ksessi onl">
<get-global identifier="helper" out-identifier="hel perQutput"/>
</ bat ch- execut i on>

* JSON

366

Drools Commands

{"bat ch-execution": {"l ookup": "ksessi onl", "comrands": {"get -
global ":{"identifier":"hel per","out-identifier":"hel perQutput"}}}}

* JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<get-gl obal out-identifier="hel perQutput” identifier="helper"/>
</ bat ch- executi on>

9.2.15. GetObjectsCommand

 Description: Returns all the objects from the current session as a Collection.

» Attributes

Table 9.15. GetObjectsCommand attributes

Name Description required

objectFilter An ObjectFilter to filter the ob- | false
jects returned from the cur-
rent session

outldentifier The identifier to be used in | false
the execution results

« Command creation

Bat chExecut i onCommrand conmand = new Bat chExecut i onCommrand() ;
comand. set Lookup("ksessi onl");

Cet Obj ect sComrand get Obj ect sCommand = new Get Obj ect sCommand() ;
get bj ect sCommand. set Qut | denti fier("objects");

command. get Commands() . add(get Obj ect sCommand) ;

* XML output

* XStream

<bat ch- executi on | ookup="ksessi onl">
<get - obj ects out-identifier="objects"/>

367

Drools Commands

</ bat ch- executi on>

JSON

{"bat ch-execution": {"| ookup": "ksessi onl", "commands": {"get - obj ects": {"out -
identifier":"objects"}}}}

JAXB

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<bat ch- executi on | ookup="ksessi onl">

<get -obj ects out-identifier="objects"/>
</ bat ch- executi on>

368

Chapter 10. CDI

10.1. Introduction

CDI [http://lwww.cdi-spec.org], Contexts and Dependency Injection, is Java specification that pro-
vides declarative controls and strucutres to an application. KIE can use it to automatically instan-
tiate and bind things, without the need to use the programmatic API.

10.2. Annotations

@KContainer, @KBase and @KSession all support an optional ‘'name' attribute. CDI typically
does "getOrCreate" when it injects, all injections receive the same instance for the same set of
annotations. the 'name' annotation forces a unique instance for each name, although all instance
for that name will be identity equals.

10.2.1. @KReleaseld

Used to bind an instance to a specific version of a KieModule. If kie-ci is on the classpath this will
resolve dependencies automatically, downloading from remote repositories.

10.2.2. @KContainer

@KContainer is optional as it can be detected and added by the use of @Inject and variable type
inferrence.

@ nj ect
private KieContainer kContainer;

Figure 10.1. Injects Classpath KieContainer

@ nj ect
@KRel easel d(groupld = "jarl", artifactld = "art1l", version = "1.1")
private KieContainer kContainer;

Figure 10.2. Injects KieContainer for Dynamic KieModule

@ nj ect
@Cont ai ner (nane = "kcl")
@Rel easel d(groupld = "jarl", artifactld = "art1", version = "1.1")

private KieContainer kContainer;

Figure 10.3. Injects named KieContainer for Dynamic KieModule

369

http://www.cdi-spec.org
http://www.cdi-spec.org

CDI

10.2.3. @KBase

@KBase is optional as it can be detected and added by the use of @Inject and variable type
inference.

The default argument, if given, maps to the value attribute and specifies the name of the KieBase
from the kmodule.xml file.

@ nj ect
private KieBase kbase;

Figure 10.4. Injects the Default KieBase from the Classpath KieContainer

@ nj ect
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private KieBase kbase;

Figure 10.5. Injects the Default KieBase from a Dynamic KieModule

@ nj ect

@KBase(" kbasel")

@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Ki eBase kbaselv10;

@ nj ect

@Base("kbasel")

@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.1")
private Ki eBase kbaselv10;

Figure 10.6. Side by side version loading for 'jarl1.KBasel' KieBase

@ nj ect
@KSessi on(val ue="kbasel", name="kb1l")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")

private KieBase kbaselkbl;

@ nj ect
@KSessi on(val ue="kbasel", nanme="kb2")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")

private Ki eBase kbaselkb2;

Figure 10.7. Use 'name’ attribute to force new Instance for 'jarl.KBasel'
KieBase

370

CDI

10.2.4. @KSession for KieSession

@KSession is optional as it can be detected and added by the use of @Inject and variable type
inference.

The default argument, if given, maps to the value attribute and specifies the name of the KieSes-
sion from the kmodule.xml file

@ nj ect
private KieSession ksession;

Figure 10.8. Injects the Default KieSession from the Classpath KieContainer

@ nj ect
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private KieSession ksession;

Figure 10.9. Injects the Default KieSession from a Dynamic KieModule

@ nj ect

@KSessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Ki eSession ksessionv10;

@ nj ect

@Sessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.1")
private KieSession ksessionvll;

Figure 10.10. Side by side version loading for 'jarl.KBasel' KieBase

@ nj ect
@KSessi on(val ue="ksessi onl", name="ksl1")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")

private Ki eSession ksessionlksl

@ nj ect
@KSessi on(val ue="ksessi onl", name="ks2")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")

private KieSession ksessi onlks2

Figure 10.11. Use 'name' attribute to force new Instance for 'jarl.KBasel'
KieSession

371

CDI

10.2.5. @KSession for StatelessKieSession

@KSession is optional as it can be detected and added by the use of @Inject and variable type
inference.

The default argument, if given, maps to the value attribute and specifies the name of the KieSes-
sion from the kmodule.xml file.

@ nj ect
private Statel essKi eSessi on ksessi on;

Figure 10.12. Injects the Default StatelessKieSession from the Classpath
KieContainer

@ nj ect
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Statel essKi eSessi on ksession;

Figure 10.13. Injects the Default StatelessKieSession from a Dynamic
KieModule

@ nj ect

@KSessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", rtifactld = "art1l", version = "1.0")
private Statel essKieSession ksessionv10;

@ nj ect

@Sessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", rtifactld = "art1l", version
private Statel essKi eSessi on ksessionv1l;

I
=
=

-

Figure 10.14. Side by side version loading for 'jarl1.KBasel' KieBase

@ nj ect
@Sessi on(val ue="ksessi onl", name="ks1")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")

private Statel essKieSession ksessionlksl

@ nj ect
@KSessi on(val ue="ksessi onl", name="ks2")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")

372

CDI

private Statel essKieSession ksessi onlks2

Figure 10.15. Use 'name' attribute to force new Instance for 'jarl.KBasel'
StatelessKieSession

10.3. APl Example Comparison

CDI can inject instances into fields, or even pass them as arguments. In this example field injection
is used.

@ nj ect
@Sessi on("ksessi onl")
Ki eSessi on kSessi on;

public void go(PrintStreamout) {
kSessi on. set d obal ("out", out);
kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

Figure 10.16. CDI example for a named KieSession

This is less code and more declarative than the APl approach.

public void go(PrintStreamout) {
Ki eServi ces ks = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. set d obal ("out", out);

kSessi on. i nsert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

Figure 10.17. APl equivalent example for a named KieSession

373

Chapter 11. Integration with Spring

11.1. Important Changes for Drools 6.0

Drools Spring integration has undergone a complete makeover inline with the changes for Drools
6.0. The following are some of the major changes
« The recommended prefix for the Drools Spring has changed from ‘drools:' to 'kie:'
* New Top Level Tags in 6.0
* kie:kmodule
 kie:import (from version 6.2)

* kie:releaseld (from version 6.2)

The following tags are no longer valid as top level tags.
» kie:kbase - A child of the kie:kmodule tag.

 kie:ksession - A child of the kie:kbase tag.

Removed Tags from previous versions Drools 5.x
 drools:resources

 drools:resource

* drools:grid

e drools:grid-node

11.2. Integration with Drools Expert
In this section we will explain the kie namespace.

11.2.1. KieModule

The <kie:kmodule> defines a collection of KieBase and associated KieSession's. The kmodule
tag has one MANDATORY parameter 'id'.

Table 11.1. Sample

‘ Attribute ‘ Description ‘ Required

Bean's id is the name to be Yes

referenced from other beans.

id

374

Integration with Spring

Attribute

Description

Standard Spring ID seman-
tics apply.

Required

A kmodule tag can contain only the following tags as children.

* kie:kbase

Refer to the documentation of kmodule.xml in the Drools Expert documentation for detailed ex-
planation of the need for kmodule.

11.2.2. KieBase

11.2.2.1. <kie:kbase>'s parameters as attributes:

Table 11.2. Sample

Attribute

Description

Required

name

Name of the KieBase

Yes

packages

includes

Comma separated list of re-
source packages to be in-
cluded in this kbase

kbase names to be included.
All resources from the corre-
sponding kbase are included
in this kbase.

No

No

default

Default kbase

No

default

scope

eventProcessingMode

Boolean (TRUE/FALSE). De-
fault kbase, if not provided, it
is assumed to be FALSE

prototype | singleton. If not
provided assumed to be sin-
gleton (default)

Event Processing Mode.
Valid options are STREAM,
CLOUD

No

No

No

equalsBehavior

declarativeAgenda

Valid options are IDENTITY,
EQUALITY

Valid options are enabled,
disabled, true, false

No

No

11.2.2.2. A kbase tag can contain only the following tags as children.

* kie:ksession

375

Integration with Spring

11.2.2.3. <kie:kbase>'s definition example

A kmodule can contain multiple (1..n) kbase elements.

Example 11.1. kbase definition example

<ki e: knodul e i d="sanpl e_nodul e" >
<ki e: kbase nanme="kbasel" packages="org. drool s.spring.sanple">

</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.2.4. Spring Bean Scope (for KieBase and KieSession)

When defining a KieBase or a KieSession, you have the option of declaring a scope for that bean.
For example, To force Spring to produce a new bean instance each time one is needed, you
should declare the bean's scope attribute to be 'prototype’. Similar way if you want Spring to return
the same bean instance each time one is needed, you should declare the bean's scope attribute
to be 'singleton’.

11.2.3. IMPORTANT NOTE
For proper initialization of the kmodule objects (kbase/ksession), it is manda-

tory for a bean of type org.kie.spring.KMvbdul eBeanFact oryPost Processor oOr
or g. ki e. spri ng. annot ati ons. KMbdul eAnnot at i onPost Processor be defined.

Example 11.2. Regular kie-spring post processorbean definition

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

Example 11.3. kie-spring post processorbean definition when annotations
are used

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. annot at i ons. KMbdul eAnnot at i onPost Processor"/ >

376

Integration with Spring

11.2.4. KieSessions

<kie:ksession> element defines KieSessions. The same tag is used to define both State-
ful (org.kie.api.runtime.KieSession) and Stateless (org.kie.api.runtime.StatelessKieSession) ses-

sions.

11.2.4.1. <kie:ksession>'s parameters as attributes:

Table 11.3. Sample

Attribute

Description

Required

name

type

default

ksession's name.

is the session stateful or
stateless?. If this attribute is
empty or missing, the ses-
sion is assumed to be of type
Stateful.

Is this the default session?

Yes

No

no

scope

prototype | singleton. If not
provided assumed to be sin-
gleton (default)

no

clockType

listeners-ref

REALTIME or PSEUDO

Specifies the reference to the
event listeners group (see
'‘Defining a Group of listeners'
section below).

Example 11.4. ksession definition example

no

no

<ki e: knmodul e i d="sanpl e- knodul e" >
<ki e: kbase name="dr| _ki esanpl e3" packages="dr| _ki esanpl e3">
<ki e: ksessi on nane="ksessi onl" type="statel ess"/>
<ki e: ksessi on nane="ksessi on2"/>

</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"

377

Integration with Spring

cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.4.2. Spring Bean Scope (for KieBase and KieSession)

When defining a KieBase or a KieSession, you have the option of declaring a scope for that bean.
For example, To force Spring to produce a new bean instance each time one is needed, you
should declare the bean's scope attribute to be "prototype’. Similar way if you want Spring to return
the same bean instance each time one is needed, you should declare the bean's scope attribute
to be 'singleton’.

11.2.5. Kie:Releaseld

11.2.5.1. <kie:releaseld>'s parameters as attributes:

Table 11.4. Sample

Attribute Description Required

id Bean's id is the name to be Yes
referenced from other beans.
Standard Spring ID seman-

tics apply.
groupld groupld from Maven GAV Yes
artifactld artifactld from Maven GAV Yes
version version from Maven GAV Yes

Example 11.5. releaseld definition example

<kie:rel easel d i d="beanl d" groupld="org. ki e. spring"
artifactld="nanmed-artifactld" version="1.0.0- SNAPSHOT"/ >

11.2.6. Kie:Import

Starting with version 6.2, kie-spring allows for importing of kie objects from kjars found on the
classpath. Two modes of importing the kie objects are currently supported.

Table 11.5.
Attribute Description Required
releaseld Reference to a Bean ID. No
Standard Spring ID seman-
tics apply.

378

Integration with Spring

Attribute Description Required

enableScanner Enable Scanner. This at- No
tribute is used only if 're-
leaseld' is specified.

scannerinterval Scanning Interval in milli sec- | No
onds. This attribute is used
only if 'releaseld’ is specified.

11.2.6.1. Global Import

The import tag will force the automatic scan of all the jars on the classpath, initialize the Kie Objects
(Kbase/KSessions) and import these objects into the spring context.

<ki e:inport />

Figure 11.1. Global Import

11.2.6.2. Specific Import - Releaseld

Using the releaseld-ref attribute on the import tag will initialize the specific Kie Objects (Kbase/
KSessions) and import these objects into the spring context.

<ki e:inport rel easel d-ref="nanedKi eSessi on"/>
<ki e:rel easel d i d="nanedKi eSessi on" groupl d="org. drool s"
artifactl| d="naned-ki esessi on" versi on="6.3.0.Betal"/>

Figure 11.2. Import Kie Objects using a releaseld

Kie Scanning feature can be enabled for KieBase's imported with a specific releaseld. This feature
is currently not available for global imports.

<ki e:inport rel easel d-ref="nanedKi eSessi on"
enabl eScanner ="true" scanner|nterval ="1000"/>

<ki e:rel easel d i d="nanedKi eSessi on" groupl d="org. drool s"
artifact|d="nanmed- ki esessi on" version="6.3.0.Betal"/>

Figure 11.3. Import Kie Objects using a releaseld - Enable Scanner

If the scanner is defined and enabled, an implicit KieScanner object is created and inserted into
the spring context. It can be retrived from the spring context.

379

Integration with Spring

/1 the inplicit nane woul d be rel easel d#scanner
Ki eScanner rel easel dScanner = context.get Bean(" nanedKi eSessi on#scanner", Ki eScanner.cl ass);
rel easel dScanner . scanNow() ;

Figure 11.4. Retriving the KieScanner from Spring Context

@ Note
kie-ci must be available on the classpath for the releaseld importing feature to work.

11.2.7. Annotations

@KContainer, @KBase and @KSession all support an optional 'name’ attribute. Spring typically
does "get" when it injects, all injections receive the same instance for the same set of annotations.
the 'name' annotation forces a unique instance for each name, although all instance for that name
will be identity equals.

11.2.7.1. @KReleaseld

Used to bind an instance to a specific version of a KieModule. If kie-ci is on the classpath this will
resolve dependencies automatically, downloading from remote repositories.

11.2.7.2. @KContainer

@Cont ai ner
private KieContainer kContai ner;

Figure 11.5. Injects Classpath KieContainer

@Cont ai ner
@KRel easel d(groupld = "jarl1l", artifactld = "art1l", version = "1.1")
private KieContainer kContainer;

Figure 11.6. Injects KieContainer for Dynamic KieModule

@Cont ai ner (nane = "kcl")
@KRel easel d(groupld = "jarl1l", artifactld = "artl1l", version = "1.1")
private Ki eContainer kContai ner;

Figure 11.7. Injects named KieContainer for Dynamic KieModule

380

Integration with Spring

11.2.7.3. @KBase

The default argument, if given, maps to the value attribute and specifies the name of the KieBase
from the spring xml file.

@XBase
private KieBase kbase;

Figure 11.8. Injects the Default KieBase from the Classpath KieContainer

@Base
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private KieBase kbase;

Figure 11.9. Injects the Default KieBase from a Dynamic KieModule

@Base("kbasel")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Ki eBase kbaselv10;

@Base("kbasel")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.1")
private Ki eBase kbaselvll;

Figure 11.10. Side by side version loading for 'jarl.KBasel' KieBase

@KSessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", artifactld = "art1l", version = "1.0")
private KieSession ksessionllkb2;

@Sessi on("ksessionl")

@Rel easel d(groupld = "jarl", artifactld = "art1", version = "1.1")
private KieSession ksessionllkb2;

Figure 11.11. Side by side version loading for 'jarl.ksessionl' KieSession

11.2.7.4. @KSession for KieSession

The default argument, if given, maps to the value attribute and specifies the name of the KieSes-
sion from the kmodule.xml or spring xml file

@XSessi on

381

Integration with Spring

private Ki eSession ksession;

Figure 11.12. Injects the Default KieSession from the Classpath
KieContainer

@Sessi on
@Rel easel d(groupld = "jarl", artifactld = "art1", version = "1.0")
private KieSession ksession;

Figure 11.13. Injects the Default KieSession from a Dynamic KieModule

@KSessi on("ksessi onl")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private KieSession ksessionv10;

@Sessi on("ksessi onl")
@Rel easel d(groupld = "jarl", artifactld = "art1", version = "1.1")
private KieSession ksessionvll;

Figure 11.14. Side by side version loading for 'jarl.KBasel' KieBase

@Sessi on("ksessi onl")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private KieSession ksessionlksl

@Sessi on("ksessi onl")

@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Ki eSession ksessionlks2

Figure 11.15. Use 'name' attribute to force new Instance for 'jarl.KBasel'
KieSession

11.2.7.5. @KSession for StatelessKieSession

The default argument, if given, maps to the value attribute and specifies the name of the KieSes-
sion from the kmodule.xml or spring xml file.

@XSessi on
private Statel essKi eSessi on ksession;

Figure 11.16. Injects the Default StatelessKieSession from the Classpath
KieContainer

382

Integration with Spring

@Sessi on
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Statel essKi eSessi on ksession;

Figure 11.17. Injects the Default StatelessKieSession from a Dynamic
KieModule

@Sessi on("ksessi onl")
@KRel easel d(groupld = "jar1l", rtifactld = "art1", version = "1.0")
private Statel essKieSession ksessionv10;

@KSessi on("ksessi onl")
@KRel easel d(groupld = "jar1l", rtifactld
private Statel essKi eSessi on ksessionv1l;

"art1", version

Il
=
=

-

Figure 11.18. Side by side version loading for 'jarl.KBasel' KieBase

@KSessi on(val ue="ksessi onl", name="ksl1")
@KRel easel d(groupld = "jar1l", artifactld = "artl1l", version = "1.0")
private Statel essKieSession ksessionlksl
@Sessi on(val ue="ksessi onl", name="ks2")

@Rel easel d(groupld = "jarl", artifactld = "art1l", version = "1.0")
private Statel essKi eSessi on ksessi onlks2

Figure 11.19.

11.2.7.6. IMPORTANT NOTE

When annotations are used, For proper initialization of the kmodule ob-
jects (kbase/ksession), it is mandatory for either a bean of type
org. ki e. spri ng. annot ati ons. KMbdul eAnnot at i onPost Processor be defined

or spring component-scan be enabled. One of the code snippets as shown below is required.

Example 11.6. kie-spring annotations post processor bean definition

<bean i d="ki ePost Processor"
cl ass="org. ki e. spring. annot ati ons. KMbdul eAnnot at i onPost Processor"/ >

Example 11.7. kie-spring annotations - Component Scanning

<cont ext : conponent - scan base- package="org. ki e. spri ng. annot ati ons"/ >

383

Integration with Spring

@ Note

The post processor is different when annotations are used.

11.2.8. Event Listeners

Drools supports adding 3 types of listeners to KieSessions - Agendal.istener, WorkingMemoryLis-
tener, ProcessEventListener

The kie-spring module allows you to configure these listeners to KieSes-
sions using XML tags. These tags have identical names as the actual listen-
er interfaces i.e., <kie:agendaEventListener....>, <kie:ruleRuntimeEventListener....> and
<kie:processEventListener....>.

kie-spring provides features to define the listeners as standalone (individual) listeners and also
to define them as a group.

11.2.8.1. Defining Stand alone Listeners:

11.2.8.1.1. Attributes:

Table 11.6. Sample

Attribute Required Description

ref No A reference to another de-
clared bean.

Example 11.8. Listener configuration example - using a bean:ref.

<bean id="nock-agenda-I|istener" class="nocks. MockAgendaEventLi stener"/>
<bean id="nock-rr-listener" class="nocks. MockRul eRunti meEventLi stener"/>
<bean id="nock-process-listener" class="nocks. MockProcessEventLi stener"/>

<ki e: knodul e i d="Ii st eners_knodul e">
<ki e: kbase name="drl| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="ksessi on2">
<ki e: agendaEvent Li st ener ref="nock-agenda-|istener"/>
<ki e: processEvent Li st ener ref="nock-process-I|istener"/>
<ki e: rul eRunti neEvent Li stener ref="nock-rr-1istener"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

384

Integration with Spring

11.2.8.1.2. Nested Elements:

* bean
* class = String

* name = String (optional)

Example 11.9. Listener configuration example - using nested bean.

<ki e: knodul e i d="1i st eners_nodul e">
<ki e: kbase name="drl| _ki esanpl e" packages="drl| _ki esanpl e">
<ki e: ksessi on nane="ksessi onl">
<ki e: agendaEvent Li st ener >
<bean cl ass="nocks. MockAgendaEvent Li st ener"/>
</ ki e: agendaEvent Li st ener >
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean id="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/>

11.2.8.1.3. Empty Tag : Declaration with no 'ref' and without a nested bean

When a listener is defined without a reference to a implementing bean and does not contain a
nested bean, <drools:ruleRuntimeEventListener/> the underlying implementation adds the Debug
version of the listener defined in the API.

The debug listeners print the corresponding Event toString message to System.err.

Example 11.10. Listener configuration example - defaulting to the debug
versions provided by the Knowledge-API .

<bean i d="nock-agenda-|istener" class="nocks. MockAgendaEventLi stener"/>
<bean id="mock-rr-listener" class="nocks. MockRul eRunti neEventLi stener"/>
<bean id="nock-process-listener" class="nocks. MockProcessEventListener"/>

<ki e: knodul e i d="1i st eners_nodul e">
<ki e: kbase nanme="drl| _ki esanpl e" packages="drl| _ki esanpl e">
<ki e: ksessi on name="ksessi on2">
<ki e: agendaEvent Li st ener />
<ki e: processEvent Li stener />
<ki e: rul eRunti meEvent Li st ener />
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"

385

Integration with Spring

cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.8.1.4. Mix and Match of different declaration styles

The drools-spring module allows you to mix and match the different declarative styles within the
same KieSession. The below sample provides more clarity.

Example 11.11. Listener configuration example - mix and match of 'ref'/
nested-bean/empty styles.

<bean id="nock-agenda-|istener" class="nocks. MockAgendaEvent Li stener"/>
<bean id="nock-rr-listener" class="nocks. MockRul eRunti meEventLi stener"/>
<bean i d="nock-process-listener" class="nocks. MockProcessEventLi stener"/>

<ki e: knodul e i d="1i st eners_nodul e">
<ki e: kbase name="drl| _ki esanpl e" packages="drl| _ki esanpl e">
<ki e: ksessi on name="ksessi onl">
<ki e: agendaEvent Li st ener >
<bean cl ass="org. ki e. spri ng. nocks. MockAgendaEvent Li st ener"/ >
</ ki e: agendaEvent Li st ener >
</ ki e: ksessi on>
<ki e: ksessi on nane="ksessi on2">
<ki e: agendaEvent Li st ener ref="nock-agenda-Iistener"/>
<ki e: processEvent Li st ener ref="nobck-process-|istener"/>
<ki e: rul eRunti neEvent Li stener ref="nock-rr-1istener"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: kmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.8.1.5. Defining multiple listeners of the same type

It is also valid to define multiple beans of the same event listener types for a KieSession.

Example 11.12. Listener configuration example - multiple listeners of the
same type.

<bean id="nobck-agenda-1listener" class="nocks. MockAgendaEvent Li stener"/>

<ki e: knodul e i d="1i st eners_nodul e">
<ki e: kbase name="drl| _ki esanpl e" packages="drl| _ki esanpl e">
<ki e: ksessi on name="ksessi onl">
<ki e: agendaEvent Li st ener ref="nock-agenda-|istener"/>
<ki e: agendaEvent Li st ener >
<bean cl ass="org. ki e. spri ng. nocks. MockAgendaEvent Li st ener"/ >
</ ki e: agendaEvent Li st ener >
</ ki e: ksessi on>
</ ki e: kbase>

386

Integration with Spring

</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.8.2. Defining a Group of listeners:

drools-spring allows for grouping of listeners. This is particularly useful when you define a set of
listeners and want to attach them to multiple sessions. The grouping feature is also very useful,
when we define a set of listeners for 'testing' and then want to switch them for ‘production’ use.

11.2.8.2.1. Attributes:

Table 11.7. Sample

Attribute Required Description

ID yes Unique identifier

11.2.8.2.2. Nested Elements:

« kie:agendaEventListener...
* kie:ruleRuntimeEventListener...

« kie:processEventListener...

11.2.8.2.3. Example:

Example 11.13. Group of listeners - example

<bean i d="nock-agenda-|istener" class="nocks. MockAgendaEventLi stener"/>
<bean id="mock-rr-listener" class="nocks. MockRul eRunti neEventLi stener"/>
<bean i d="nock-process-listener" class="nocks. MockProcessEventListener"/>

<ki e: kmodul e id="Ii steners_nodul e">
<ki e: kbase name="drl| _ki esanpl e" packages="drl| _ki esanpl e">
<ki e: ksessi on nane="st at el essW t hGr oupedLi st eners" type="statel ess"
|i steners-ref="debugLi steners"/>
</ ki e: kbase>
</ ki e: knodul e>

387

Integration with Spring

<ki e: event Li st eners i d="debuglLi st eners">

<ki e: agendaEvent Li st ener ref="nock-agenda-Iistener"/>

<ki e: processEvent Li st ener ref="nbpck-process-|istener"/>

<ki e: rul eRunti neEvent Li stener ref="nock-rr-1istener"/>
</ ki e: event Li st ener s>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.9. Loggers

Drools supports adding 2 types of loggers to KieSessions - ConsoleLogger, FileLogger.

The kie-spring module allows you to configure these loggers to KieSessions using XML tags.
These tags have identical names as the actual logger interfaces i.e., <kie:consoleLogger....> and
<kie:fileLogger....>.

11.2.9.1. Defining a console logger:

A console logger can be attached to a KieSession by using the <kie:consoleLogger/> tag. This
tag has no attributes and must be present directly under a <kie:ksession....> element.

Example 11.14. Defining a console logger - example

<ki e: knodul e i d="| ogger s_nodul e">
<ki e: kbase name="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="Consol eLogger - st at ef ul Sessi on" type="stateful ">
<ki e: consol eLogger/ >
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.9.2. Defining a file logger:

A file logger can be attached to a KieSession by using the <kie:fileLogger/> tag. This tag has the
following attributes and must be present directly under a <kie:ksession....> element.

Table 11.8. Sample

Attribute Required Description
ID yes Unique identifier
file yes Path to the actual file on the
disk

388

Integration with Spring

Attribute Required Description

threaded no Defaults to false. Valid values
are 'true'or 'false'

interval no Integer. Specifies the interval
for flushing the contents from
memory to the disk.

Example 11.15. Defining a file logger - example

<ki e: knodul e i d="I ogger s_nodul e" >
<ki e: kbase name="drl| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="Consol eLogger - st at ef ul Sessi on" type="stateful ">
<kie:fileLogger id="fl_logger" file="#{ systenProperties['java.io.tnpdir'] }/logl"/>
<kie:fileLogger id="tfl_logger" file="#{ systenProperties['java.io.tnpdir'] }/Iog2"
threaded="true" interval ="5"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.9.2.1. Closing a FileLogger

To prevent leaks, it is advised to close the <kie:fileLogger ...> programmatically.

Logger Adapt or adaptor = (Logger Adaptor) context.getBean("fl _|l ogger")
adaptor.cl ose();

11.2.10. Defining Batch Commands

A <kie:batch> element can be used to define a set of batch commands for a given ksession.This
tag has no attributes and must be present directly under a <kie:ksession....> element. The com-
mands supported are

* insert-object

« ref = String (optional)

* Anonymous bean
 set-global

* identifier = String (required)

» reg = String (optional)

389

Integration with Spring

* Anonymous bean
* fire-all-rules
* max:n
* fire-until-halt
* start-process
» parameter
« identifier = String (required)
 ref = String (optional)
¢ Anonymous bean
* signal-event
« ref = String (optional)
» event-type = String (required)

* process-instance-id =n (optional)
Figure 11.20. Initialization Batch Commands

Example 11.16. Batch commands - example

<ki e: knodul e i d="bat ch_conmrands_nodul e" >
<ki e: kbase name="drl| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="ksessi onFor Conmands" type="stateful ">
<ki e: bat ch>
<ki e:insert-object ref="person2"/>
<ki e: set-gl obal identifier="persons" ref="personsList"/>
<kie:fire-all-rules max="10"/>
</ ki e: bat ch>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
class="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.11. Persistence

* jpa-persistence

 transaction-manager

390

Integration with Spring

* ref = String
* entity-manager-factory

« ref = String
Figure 11.21. Persistence Configuration Options

Example 11.17. ksession JPA configuration example

<ki e: kstore id="kstore" /> <!-- provides Know edgeStoreService inplenentation -->

<bean id="nyEnf"
cl ass="org. spri ngfranmewor k. orm j pa. Local Cont ai ner Enti t yManager Fact or yBean" >
<property nanme="dat aSource" ref="ds" />
<property nanme="persistenceUnit Nane"
val ue="org. drool s. persi stence.jpa.local" />
</ bean>

<bean id="txManager" cl ass="org.springfranework.orm jpa.JpaTransacti onManager" >
<property name="entityManager Factory" ref="nyEnf" />
</ bean>

<ki e: knodul e i d="persi st ence_nodul e">
<ki e: kbase name="drl| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="j paSi ngl eSessi onComrandSer vi ce" >
<ki e: confi guration>
<ki e: j pa- per si st ence>
<ki e:transacti on- manager ref="txManager"/>
<ki e:entity-manager-factory ref="nyEnf"/>
</ ki e: j pa- per si st ence>
</ ki e: configuration>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.12. Leveraging Other Spring Features

This section provides details on leveraging other standard spring features when integrating with
Drools Expert.

11.2.12.1. Using Spring Expressions (Spel)

<ki e: knodul e i d="bat ch_conmmands_nodul e" >
<ki e: kbase name="dr| _ki esanpl e" packages="#{packageRepository. packages}">
<ki e: ksessi on nanme="ksessi onFor Conmands" type="stateful"/>
</ ki e: kbase>

391

Integration with Spring

</ ki e: kmodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

<bean i d="packageRepository" class="sanpl e. package. cl ass. PackageRepo" >
<property name="packages" val ue="dr| _ki esanpl e3">
</ bean>

<ki e: knodul e i d="I ogger s_nodul e" >
<ki e: kbase name="dr| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nanme="Consol eLogger - st at ef ul Sessi on" type="stateful ">
<kie:fileLogger id="fl" file="#{ systenProperties['java.io.tnpdir'] }/1ogl"/>
<kie:fileLogger id="tfl" file="#{ systenProperties['java.io.tnpdir'] }/Iog2"
threaded="true" interval ="5"/>
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

11.2.12.2. Using Spring Profiles

Spring 3.1 introduces a new profile attribute to the beans element of the spring-beans schema.
This attribute acts as a switch when enabling and disabling profiles in different environments. One
potential use of this attribute can be to have the same kbase defined with debug loggers in 'dev'
environment and without loggers in 'prod' environment.

The below code snippet illustrates the concept of 'profiles’.

<beans xm ns="http://ww. spri ngfranmework. org/ schenma/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: ki e="http://drools.org/schema/ ki e-spring"
xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
http://ww. springfranewor k. or g/ schema/ beans/ spri ng- beans-4. 0. xsd
http://drool s. org/ schema/ ki e-spring http://drools. org/schenma/ ki e-spring. xsd">
<beans profil e="devel opment" >
<ki e: knodul e id="t est - knodul e" >
<ki e: kbase name="drl| _ki esanpl e" packages="dr| _ki esanpl e">
<ki e: ksessi on nane="ksessi onl" type="statel ess">
<ki e: consol eLogger />
</ ki e: ksessi on>
</ ki e: kbase>
</ ki e: kmodul e>

</ beans>
<beans profil e="production">

<ki e: knodul e i d="t est - knmodul e" >
<ki e: kbase name="dr| _ki esanpl e" packages="drl| _ki esanpl e">

392

Integration with Spring

<ki e: ksessi on nane="ksessi onl" type="statel ess"/>
</ ki e: kbase>
</ ki e: knmodul e>

</ beans>

</ beans>

As shown above, the Spring XML contains the definition of the profiles. While loading the Appli-
cationContext you have to tell Spring which profile you're loading.

There are several ways of selecting your profile and the most useful is by using the

"spring.profiles.active" system property.

Syst em set Property("spring.profiles.active", "devel opnent ") ; Appl i cat i onCont ext ctx = new
Cl assPat hXm Appl i cati onCont ext ("beans. xm ") ;
vel opnment ") ; Appl i cati onContext ctx =

Obviously, it is not a good practice to hard code things as shown above and the recommended
practice is to keep the system properties definitions independent of the application.

-Dspring. profiles.active="devel opment"

The profiles can also be loaded and enabled programmtically

Generi cXm ApplicationContext ctx = new GenericXm ApplicationContext("beans. xm");
Conf i gur abl eEnvi ronnent env = ctx. get Envi ronnent ();

env. set Acti veProfil es("devel opment");

ctx.refresh();

11.3. Integration with jBPM Human Task

This chapter describes the infrastructure used when configuring a human task server with Spring
as well as a little bit about the infrastructure used when doing this.

11.3.1. How to configure Spring with jBPM Human task

The jBPM human task server can be configured to use Spring persistence. Example 11.18, “Con-
figuring Human Task with Spring” is an example of this which uses local transactions and Spring's
thread-safe EntityManager proxy.

The following diagram shows the dependency graph used in Example 11.18, “Configuring Human
Task with Spring”.

393

Integration with Spring

TaskSessionSpringFactorylmpl
@wks pringTran r:iwlir.u@
@ﬂiﬂflEm ityTv 11|111gf|'F1@

Figure 11.22. Spring Human Task integration injection dependencies

Shared EntityManagerBean

A TaskSer vi ce instance is dependent on two other bean types: a drools Syst enEvent Li st ener
bean as well as a TaskSessi onSpri ngFact or yl npl bean. The TaskSessi onSpri ngFact oryl m
pl bean is howerver not injected into the TaskSer vi ce bean because this would cause a circular
dependency. To solve this problem, when the TaskSer vi ce bean is injected into the TaskSes-
si onSpri ngFact or yl npl bean, the setter method used secretly injects the TaskSessi onSpri ng-
Fact oryl npl instance back into the TaskSer vi ce bean and initializes the TaskSer vi ce bean as
well.

The TaskSessi onSpri ngFact or yl npl bean is responsible for creating all the internal instances in
human task that deal with transactions and persistence context management. Besides a TaskSer -
vi ce instance, this bean also requires a transaction manager and a persistence context to be in-
jected. Specifically, it requires an instance of a HunenTaskSpri ngTr ansact i onManager bean (as
a transaction manager) and an instance of a Shar edEnt i t yManager Bean bean (as a persistence
context instance).

We also use some of the standard Spring beans in order to configure persistence: there's a bean
to hold the Ent i t yManager Fact or y instance as well as the Shar edEnt i t yManager Bean instance.
The Shar edEnt i t yManager Bean provides a shared, thread-safe proxy for the actual Ent i t yMan-
ager .

The HumanTaskSpri ngTr ansact i onManager bean serves as a wrapper around the Spring trans-
action manager, in this case the JpaTr ansacti onManager . An instance of a JpaTr ansacti on-
Manager bean is also instantiated because of this.

Example 11.18. Configuring Human Task with Spring

<?xm version="1.0" encodi ng="UTF-8"?>

394

Integration with Spring

<beans xm ns="http://ww. springframework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns:j bpm"http://drools. org/schema/ drool s-spring"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans http://
www. spri ngfranewor k. or g/ schema/ beans/ spri ng- beans- 3. 0. xsd
http://drool s. org/ schena/drool s-spring org/drool s/ container/spring/drool s-
spring-1.2.0.xsd">

<l-- persistence & transactions-->

<bean id="htEnf" class="org. springframework.orm jpa.Local Contai nerEntityManager Fact or yBean">
<property nanme="persistenceUnitNane" val ue="org.jbpmtask" />

</ bean>

<bean id="ht EmMf class="org.springframework.orm jpa.support. SharedEntityManager Bean">
<property nanme="entityManager Factory" ref="htEnf"/>
</ bean>

<bean id="j paTxMyr" cl ass="org. springfranmework. orm jpa.JpaTransacti onManager" >
<property nane="entityManager Factory" ref="htEnf" />
<l-- this nust be true if using the SharedEntityManager Bean, and fal se otherw se -->
<property nanme="nestedTransacti onAl | owed" val ue="true"/>

</ bean>

<bean id="ht TxMyr" class="org.drool s. contai ner.spring. beans. persi stence. HuimanTaskSpri ngTransact i onManager" >
<constructor-arg ref="jpaTxMyr" />

</ bean>
<!'-- hunan-task beans -->
<bean id="systenEventListener" class="org.drools.SystenEventListenerFactory" factory-

met hod="get Syst enEvent Li stener" />

<bean id="taskService" class="org.jbpmtask.service. TaskService" >
<property nanme="systenEventListener" ref="systenEventListener" />
</ bean>

<bean id="springTaskSessi onFactory" class="org.jbpmtask. service. persi stence. TaskSessi onSpri ngFact oryl npl "
init-nethod="initialize" depends-on="taskService" >
<!-- if using the SharedEntityManager Bean, nake sure to enabl e nested transactions -->
<property nanme="entityManager" ref="htEnl' />
<property nanme="transacti onManager" ref="ht TxMgr" />
<property nanme="useJTA"' val ue="fal se" />
<property nanme="taskService" ref="taskService" />
</ bean>

</ beans>

When using the Shar edEnt i t yManager Bean instance, it's important to configure the Spring trans-
action manager to use nested transactions. This is because the Shar edEnt i t yManager Bean is
a transactional persistence context and will close the persistence context after every operation.
However, the human task server needs to be able to access (persisted) entities after operations.
Nested transactions allow us to still have access to entities that otherwise would have been de-
tached and are no longer accessible, especially when using an ORM framework that uses lazy-
initialization of entities.

395

Integration with Spring

Also, while the TaskSessi onSpri ngFact oryl npl bean takes an “useJTA” parameter, at the mo-
ment, JTA transactions with Spring have not yet been fully tested.

396

Chapter 12. Apache Camel
Integration

12.1. Camel

Camel provides a light weight bus framework for getting information into and out of Drools.

Drools introduces two elements to make easy integration.

 Drools Policy

Augments any JAXB or XStream data loaders. For JAXB it adds drools related paths ot the
contextpath, for XStream it adds custom converters and aliases for Drools classes. It also han-
dles setting the ClassLoader to the targeted ksession.

 Drools Endpoint
Executes the payload against the specified drools session

Drools can be configured like any normal camel component, but notice the policy that wraps the
drools related segments. This will route all payloads to ksessionl

Example 12.1. Drools EndPoint configured with the CXFRS producer

<bean id="ki ePolicy" class="org.kie.canel.conponent.Ki ePolicy" />

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schema/spring">
<rout e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreanl' />
<to uri="kie: ksessionl" />
<mar shal ref="xstrean' />
</ policy>
</ rout e>
</ canel Cont ext >

Itis possible to not specify the session in the drools endpoint uri, and instead "multiplex" based on
an attribute or header. In this example the policy will check either the header field "DroolsLookup"
for the named session to execute and if that isn't specified it'll check the "lookup" attribute on the
incoming payload.

Example 12.2. Drools EndPoint configured with the CXFRS producer

<bean id="ki ePolicy" class="org.kie.canel.conponent.Ki ePolicy" />

397

Apache Camel Integration

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schema/spring">
<rout e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">

<unmar shal ref="xstreant />

<to uri="kie:dynamc" />

<marshal ref="xstrean' />

</ policy>
</route>

</ canel Cont ext >

Example 12.3. Java Code to execute against Route from a Spring and Camel
Context

public class MTest extends Canel SpringTestSupport { @verride protected
Abstract Xm Appl i cati onCont ext createApplicationContext() { return new
Cl assPat hXm Appl i cati onCont ext (" or g/ drool s/ canel / conponent / Cxf RsSpri ng. xm ") ; } public
void test1l() throws Exception { String cnd = ""; cnd += "<bat ch-execution | ookup=
\"ksessi onl\">\n"; cmd += " <insert out-identifier=\"salaboy\">\n"; cmd += "
<org. drool s. pi pel i ne. canel . Person>\n"; cmd += " <nane>sal aboy</ nane>\n";
cmd += " </ org. drool s. pi pel i ne. canel . Person>\n"; cmd += " </insert>\n";
cmd += " <fire-all-rules/>\n"; cmd += "</ batch-execution>\n";
Obj ect object = this.context.createProducer Tenpl ate().requestBody("direct://client",
cmd) ; System out. println(object); 1}
port {

@verride prot ected Abstract Xm Appl i cati onCont ext createApplicati onContext() {
return new C assPat hXnl Appl i cati onCont ext (" or g/ drool s/
camnel / conponent / Cxf RsSpri ng. xm ") ;

} public void test1() throws
Exception { String cmd
= PO cnd += "<bat ch-execution
| ookup=\"ksessi on1\ ">\ n"; cnd += " <insert out-identifier=
\ "sal aboy\">\n"; cnd +="
<org.drool s. pi pel i ne. canel . Person>\n"; cnd += "
<name>sal aboy</ nane>\n"; cmd += "
</ org.drool s. pi peline.canel . Person>\n"; cmd += "
</insert>\n"; cmd += " <fire-all-
rules/>\n"; cmd += "</

bat ch- executi on>\n";
Obj ect obj ect =this.context.createProducerTenpl ate().requestBody("direct://
client", cmd); System out. println(object
NE
1}

The following urls show sample script examples for jaxb, xstream and json marshalling using:

* http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

« http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/jaxb.mvt?r=HEAD

398

Apache Camel Integration

* http://ffisheye.jboss.org/browse/JBossRules/trunk/drools-camel/src/test/resources/org/drools/
camel/component/xstream.mvt?r=HEAD

399

Chapter 13. Drools Camel Server

13.1. Introduction

The drools camel server (drools-camel-server) module is a war which you can deploy to execute
KnowledgeBases remotely for any sort of client application. This is not limited to JVM application
clients, but any technology that can use HTTP, through a REST interface. This version of the
execution server supports stateless and stateful sessions in a native way.

13.2. Deployment

Drools Camel Server is a war file, which can be deployed in a application server (such as JBoss
AS). As the service is stateless, it is possible to have have as many of these services deployed
as you need to serve the client load. Deploy on JBoss AS 4.x / Tomcat 6.x works out-of-the-box,
instead some external dependencies must be added and the configuration must be changed to
be deployed in JBoss AS 5

13.3. Configuration
Inside the war file you will find a few XML configuration files.

e beans.xml
» Skeleton XML that imports knowledge-services.xml and camel-server.xml
» camel-server.xml
» Configures CXF endpoints with Camel Routes
» Came Routes pipeline messages to various configured knowledge services
» knowledge-services.xml
» Various Knowledge Bases and Sessions
« camel-client.xml
» Sample camel client showing how to send and receive a message

» Used by "out of the box" test.jsp

13.3.1. REST/Camel Services configuration
The next step is configure the services that are going to be exposed through drools-server. You

can modify this configuration in camel-server.xml file.

<?xm version="1.0" encodi ng="UTF-8"?>
<beans xm ns="http://ww. spri ngframework. or g/ schenma/ beans"

400

Drools Camel Server

xm ns: xsi ="http://ww.w3. or g/ 2001/ XM_Scheng- i nst ance"
xm ns: cxf="http://canel .apache. org/ schena/ cxf"
xm ns:jaxrs="http://cxf.apache. org/jaxrs"
xsi : schenalLocati on="
http://ww. springfranework. org/ schema/ beans http://ww. springfranmework. org/ schena/ beans/
spring- beans-2.5. xsd
http://canel . apache. org/ schema/ cxf http://canel.apache. org/ schema/ cxf/canel - cxf. xsd
http://cxf.apache.org/jaxrs http://cxf.apache. org/schemas/jaxrs. xsd
http://canel . apache. org/ schena/ spring http://canel . apache. or g/ schena/ spri ng/ canel -
spring. xsd" >

<i mport resource="cl asspat h: META- | NF/ cxf/cxf.xm" />
<i nmport resource="cl asspat h: META- | NF/ cxf / cxf - ext ensi on-j axr s- bi ndi ng. xm "/ >
<inmport resource="cl asspat h: META- | NF/ cxf/cxf-servlet.xm" />

<l--
! If you are running on JBoss you will need to copy a canel-jboss.jar into the lib and
set this C assLoader configuration
I http://canel.apache. org/ canel -j boss. ht n
! <bean id="j bossResol ver" cl ass="org. apache. canel . j boss. JBossPackageScanC assResol ver"/>

2D

<I--
! Define the server end point.
! Copy and paste this el ement, changing id and the address, to expose services on different
urls.
! Di fferent Canel routes can handle different end point paths.
==
<cxf:rsServer id="rsServer"
address="/rest"
servi ceCl ass="org. ki e. j ax. rs. CommandExecut or | npl ">
<cxf: providers>
<bean cl ass="org. ki e. j ax. rs. CoomandMessageBodyReader "/ >
</ cxf: provi der s>
</ cxf:rsServer>

<cxf: cxf Endpoi nt id="soapServer"
addr ess="/ soap"
servi ceNanme="ns: CommandExecut or"
endpoi nt Name="ns: ConmandExecut or Port "
wsdl URL="soap. wsdl "
xm ns: ns="http://soap.jax.drools.org/" >
<cxf:properties>
<entry key="dataFormat" val ue="MESSAGE"/ >
<entry key="defaul t Operati onNane" val ue="execute"/>
</ cxf: properties>
</ cxf: cxf Endpoi nt >

<!-- Leave this, as it's needed to nmake Canel "drools" aware -->
<bean id="ki ePolicy" class="org.Kkie.canel.conponent.Ki ePolicy" />

<canel Cont ext id="canel" xnml ns="http://canel.apache. org/schema/spring">

<l--

! Routes incom ng nessages from end point id="rsServer".

| Exanpl e route unmarshals the nessages with xstream and executes agai nst ksessionl.

! Copy and paste this elenent, changing marshallers and the "to' uri, to target different
sessi ons, as needed.

oo

401

Drools Camel Server

<r out e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreant />
<to uri="kie: ksessionl" />
<marshal ref="xstrean />
</ policy>
</route>

<r out e>
<fromuri="cxf://bean://soapServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreant />
<to uri="kie: ksessionl" />
<marshal ref="xstrean' />
</ policy>
</route>

</ canel Cont ext >

</ beans>

13.3.1.1. RESTful service endpoint creation

In the next XML snippet code we are creating a RESTful (JAX-RS) endpoint bound to /kser-
vice/rest address and using org.drools.jax.rs.CommandExecutorimpl as the service implementer.
This class is only used to instantiate the service endpoint because all the internal implementation
is managed by Camel, and you can see in the source file that the exposed execute service must
be never called.

Also a JAX-RS Provider is provided to determine if the message transported can be processed
in this service endpoint.

<cxf:rsServer id="rsServer"
address="/rest"
servi ceCl ass="org. ki e. j ax. rs. ConmandExecut or | npl " >
<cxf: provi ders>
<bean class="org. ki e. jax. rs. CoomandMessageBodyReader"/ >
</ cxf: providers>
</ cxf:rsServer>

Ideally this configuration doesn't need to be modified, at least the Service Class and the JAX-
RS Provider, but you can add more endpoints associated to different addresses to use them in
other Camel Routes.

After all this initial configuration, you can start config your own Knowledge Services.
13.3.1.2. Camel Kie Policy & Context creation

KiePolicy is used to add Drools support in Camel, basically what it does is to add interceptors into
the camel route to create Camel Processors on the fly and modify the internal navigation route.

402

Drools Camel Server

If you want to have SOAP support you need to create your custom Drools Policy, but it's going
to be added in the next release.

But you don’t need to know more internal details, only instantiate this bean:

<bean id="ki ePolicy" class="org.kie.canel.conponent.KiePolicy" />

The next is create the camel route that will have the responsibility to execute the commands sent
through JAX-RS. Basically we create a route definition associated with the JAX-RS definition as
the data input, the camel policy to be used and inside the “execution route” or ProcessorDefini-
tions. As you can see, we set XStream as the marshaller/unmarshaller and the drools execution
route definition

<canel Cont ext id="canel" xm ns="http://canel.apache. org/schema/spring">
<rout e>
<fromuri="cxfrs://bean://rsServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreani" />
<to uri="kie: ksessionl" />
<mar shal ref="xstreant />
</ policy>
</ rout e>
<rout e>
<fromuri="cxf://bean://soapServer"/>
<policy ref="kiePolicy">
<unmar shal ref="xstreant' />
<to uri="kie: ksessionl" />
<mar shal ref="xstreant />
</ policy>
</ rout e>
</ canel Cont ext >

The drools endpoint creation has the next arguments

<to uri="kie:{1}/{2}" />

1. Execution Node identifier that is registered in the CamelContext
2. Knowledge Session identifier that was registered in the Execution Node with identifier {1}

Both parameters are configured in knowledge-services.xml file.

13.3.1.3. Knowledge Services configuration

The next step is create the Knowledge Sessions that you are going to use.

<beans xm ns="http://ww. spri ngfranmework. org/ schenma/ beans"

403

Drools Camel Server

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
xm ns: ki e="http://drool s. org/ schena/ ki e-spring"
xsi : schemaLocati on="http://ww. spri ngfranmewor k. or g/ schena/ beans http://
www. spri ngfranmewor k. or g/ schena/ beans/ spri ng- beans- 3. 0. xsd
http://drool s. org/ schena/ ki e-spring http://drools.org/schema/
ki e-spring. xsd" >

<ki e: knodul e i d="drool s-canel -server">
<ki e: kbase nane="kbasel" packages="org.drools.server">
<ki e: ksessi on nane="ksessi onl" type="statel ess"/>
</ ki e: kbase>
</ ki e: knodul e>

<bean i d="ki ePost Processor"
cl ass="org. ki e. spri ng. KMbdul eBeanFact or yPost Processor"/ >

</ beans>

The execution-node is a context or registered kbases and ksessions, here kbasel and ksessionl
are planed in the nodel context. The kbase itself consists of two knowledge definitions, a DRL
and an XSD. The Spring documentation contains a lot more information on configuring these
knowledge services.

13.3.1.4. Test

With drools-server war unzipped you should be able to see a test.jsp and run it. This example just
executes a simple "echo" type application. It sends a message to the rule server that pre-appends
the word "echo" to the front and sends it back. By default the message is "Hello World", different
messages can be passed using the url parameter msg - test.jsp?msg="My Custom Message".

Under the hood the jsp invokes the Test.java class, this then calls out to Camel which is where
the meet happens. The camel-client.xml defines the client with just a few lines of XML

<l-- Leave this, as it's needed to make Canel "drools" aware -->
<bean id="ki ePolicy" class="org.kie.canel.conponent.Ki ePolicy" />

<canel Context id="canel" xm ns="http://canel.apache. org/schema/ spring">
<rout e>
<fromuri="direct://kservice/rest"/>
<policy ref="kiePolicy">
<to uri="cxfrs://http://]ocal host: 8080/ drool s-server/kservice/rest"/>
</ policy>
</rout e>
<rout e>
<fromuri="direct://kservicel/soap"/>
<policy ref="kiePolicy">
<to uri="cxfrs://http://1ocal host: 8080/ drool s-server/kservi ce/ soap"/>
</ policy>
</route>
</ canel Cont ext >

404

Drools Camel Server

"direct://kservice" is just a named hook, allowing Java to grab a reference and push data into it.
In this example the data is already in XML, so we don't need to add any Dat aFor mat s to do the
marshalling. The KiePolicy adds some smarts to the route and you'll see it used on the server side
too. If JAXB or XStream were used, it would inject custom paths and converters, it can also set
the ClassLoader too on the server side, on the client side it automatically unwraps the Response
object.

The rule itself can be found here: test.drl. Notice the type Message is declared part of the DRL
and is thus not present on the Classpath.

decl are Message text : Stringend rule "echo" dialect "nvel"when $m : Message();then
$mtext = "echo:" + $mtext;end
Message text :
Stringend
rule "echo" dial ect

"nmvel "when $m :

Message();then $mtext = "echo:" +

405

Chapter 14. IMX monitoring with
RHQ/JON

14.1. Introduction

The Drools engine supports runtime monitoring through JMX standard MBeans. These MBeans
expose configuration and metrics data, from live knowledge bases and sessions, to internal details
like rule execution times. Any JMX compatible console can be used to access that data. This
chapter details how to use RHQ/JON to do it, but similar steps can be used for any other console.

14.1.1. Enabling JMX monitoring in a Drools application

To enable JMX monitoring in a Drools application, it is necessary to enable remote monitoring in
the JVM. There are several tutorials on how to do that in the internet, but we recommend that you
check the documentation of your specific JVM. Using the Oracle/Sun JVM, it can be as simple as
running the engine with a few command line system properties.

For instance, to enable remote monitoring on port 19988 with disabled authentication (should
be only used for tests/demos, as in production authentication should be enabled), just run the
application with the following command line parameters:

- Dcom sun. managenent . j nxr enot e. port =19988 - Dcom sun. managenent . j nxr enot e. ssl =f al se
Dcom sun. nanagenent . j nxr endt e. aut hent i cat e=f al se

The second step is to enable the Drools MBeans. As any Drools configuration, that can be done
by setting a system property, or adding the property to a configuration file, or using the API.

To enable it in the command line, use:
- Dki e. mbeans=enabl ed
To enable id using the API, use:

Ki eBaseConfiguration conf = ...
conf. set Opti on(MBeansOpti on. ENABLED);

14.1.2. Installing and running the RHQ/JON plugin

The following sequence of steps can be used to configure JON to monitor a Drools application:

1. Download the JON server and agent.

406

JMX monitoring with RHQ/JON

8.

9.

. Download Drools plugin included in the "Drools and jBPM tools" bundle (http://www.jboss.org/

drools/downloads.html).

. Install server, agent, and the plugin.
. Check that the server is running, agent is running and plugin is installed.
. Execute the drools application [see details in the previous section].

. On the agent console, type "discovery" command for the agent to find the drools application,

which it will find on port 19988.

. On JON console, click on auto-discovery queue.

Select the IMX Server process that is showing there, running on port 19988.

Click import.

10Click on Resources->servers.

11Click on the JMX Server.

12Under JMXServer on the left hand side, you have Drools Service.

407

Part V. Drools Workbench

The Drools workbench is built with the UberFire framework and uses the Guvnor plugin. Drools
provides an additional rich set of plugins for rule authoring metaphors.

Chapter 15. Workbench

15.1. Installation

15.1.1. War installation

Use the war from the workbench distribution zip that corrsponds to your application server. The
differences between these war files are mainly superficial. For example, some JARs might be
excluded if the application server already supplies them.

» eap6_4: tailored for Red Hat JBoss Enterprise Application Platform 6.4

e tontat 7: tailored for Apache Tomcat 7

» was8: tailored for IBM WebSphere Application Server 8

« webl ogi c12: tailored for Oracle WebLogic Server 12¢

« wi | df | y8: tailored for Red Hat JBoss Wildfly 8

15.1.2. Workbench data

The workbench stores its data, by default in the directory $WORKI NG_DI RECTORY/ . ni ogi t, for
example wi | df | y-8. 0. 0. Fi nal / bi n/ . gi t ni o, but it can be overridden with the system property
-Dorg.uberfire.nio.git.dir.

409

Workbench

15.1.3. System properties

Here's a list of all system properties:

org. uberfire.nio.git.dir:Location of the directory . ni ogi t . Default: working directory
org. uberfire.nio.git.daenon. enabl ed: Enables/disables git daemon. Default: t r ue

org. uberfire.nio.git.daenon. host: If git daemon enabled, uses this property as local host
identifier. Default: | ocal host

org. uberfire.nio.git.daenon. port: If git daemon enabled, uses this property as port num-
ber. Default: 9418

org. uberfire.nio.git.ssh. enabl ed: Enables/disables ssh daemon. Default: t r ue

org. uberfire.nio.git.ssh. host: If ssh daemon enabled, uses this property as local host
identifier. Default: | ocal host

org. uberfire.nio.git.ssh.port:If sshdaemon enabled, uses this property as port number.
Default: 8001

org.uberfire.nio.git.ssh.cert.dir:Location of the directory . securi ty where local cert-
tificates will be stored. Default: working directory

org. uberfire. metadat a. i ndex. di r: Place where Lucene . i ndex folder will be stored. De-
fault: working directory

org. uberfire.cluster.id: Name of the helix cluster, for example: ki e- cl ust er

org.uberfire.cluster.zk: Connection string to zookeeper. This is of the form
host 1: port 1, host 2: port 2, host 3: port 3, for example: | ocal host : 2188

org.uberfire.cluster.|ocal.id:Unique id of the helix cluster node, note that " ' is replaced
with '_', for example: nodel_12345

org. uberfire.cluster.vfs.|ock: Name of the resource defined on helix cluster, for example:
ki e-vfs

org.uberfire.cluster.autostart: Delays VFS clustering until the application is fully initial-
ized to avoid conflicts when all cluster members create local clones. Default: f al se

org. uberfire. sys.repo. nonitor. di sabl ed: Disable configuration monitor (do not disable
unless you know what you're doing). Default: f al se

org.uberfire.secure. key: Secret password used by password encryption. Default:
org. uberfire.admn

org.uberfire.secure.alg: Crypto algorithm used by password encryption. Default:
PBEW t hMD5ANdDES

or g. uberfire. donai n: security-domain name used by uberfire. Default: Appl i cati onReal m

410

Workbench

or g. guvnor. n2repo. di r: Place where Maven repository folder will be stored. Default: work-
ing-directory/repositories/kie

org. ki e. exanpl e. reposi tori es: Folder from where demo repositories will be cloned. The
demo repositories need to have been obtained and placed in this folder. Demo repositories can
be obtained from the kie-wb-6.2.0-SNAPSHOT-example-repositories.zip artifact. This System
Property takes precedence over org.kie.demo and org.kie.example. Default: Not used.

or g. ki e. deno: Enables external clone of a demo application from GitHub. This System Prop-
erty takes precedence over org.kie.example. Default: t r ue

or g. ki e. exanpl e: Enables example structure composed by Repository, Organization Unit and
Project. Default: f al se

To change one of these system properties in a WildFly or JBoss EAP cluster:

1.

2.

Edit the file $JBOSS_HOME/ domai n/ confi gur ati on/ host . xni .

Locate the XML elements ser ver that belong to the mai n- server - gr oup and add a system
property, for example:

<system properties>
<property name="org.uberfire.nio.git.dir" value="..." boot-tinme="false"/>

</system properties>

15.2. Quick Start

These steps help you get started with minimum of effort.

They should not be a substitute for reading the documentation in full.

15.2.1. Add repository

Create a new repository to hold your project by selecting the Administration Perspective.

Project Authoring

Administration N

The Knowledge

Figure 15.1. Selecting Administration perspective

411

Workbench

Select the "New repository" option from the menu.

Organizational Units - -

File Explorer List isitorieskditor
Clone repository

Figure 15.2. Creating new repository

& Repositories

Enter the required information.

412

Workbench

New Repository

+ Baslic Settings

Managed Repository Settings Repository Name

myExampleRepository

* In Organizational Unit

demo v

¥ Managed Repository

A managed repository provides project-level version control and project branches for managing the release cycle.

< Previous Next > Cancel & Finish

Figure 15.3. Entering repository information step 1/2

413

Workbench

New Repository

+ Basic Settings

+/ Managed Repository
Settings

Repository Type:

Single-project Repository
Create a single managed project in this repository. Use this option for simple or self-contained projects.
® Multi-project Repository

Integrate multiple projects to create a larger application. The projects in this repository will be managed

together, and will all increment version numbers together.

Project Branches:

¥ Automatically Configure Branches (master/dev/release)

Project Settings:

* Name

myExampleRepository

Description

* Group

demo

* Artifact

myExampleRepository

* Version

1.0.0-SNAPSHOT

< Previous Next > Cancel [Finish

Figure 15.4. Entering repository information step 2/2 (only for managed

repositories)

15.2.2. Add project

Select the Authoring Perspective to create a new project.

414

Workbench

Authoring -

Organiz Project Authoring Wiories ~
Administration

File Explorer

& Repositories
&= myExampleRepository
& readme.md

Figure 15.5. Selecting Authoring perspective

Select "Project” from the "New ltem" menu.

415

Workbench

Explore Fepository -

Business Process
demo = myl
Diata Object
Decizion Table (Spreadsheet)
: . DEL file
OUpen Project E
1 DSL definition

Enumeration

Form
| Global Variable(s)

Guided Decision Table

Guided Decision Tree

Guided Rule

Guided Fule Template

Guided Score Card

Fackage

Score Card (Spreadsheet)

Test Scenario

Uploaded file

Waork ltem definition

Figure 15.6. Creating new project

Enter a project name first.

416

Workbench

Create new Project

*Froject myFroject

Figure 15.7. Entering project name

Enter the project details next.

» Group ID follows Maven conventions.
« Artifact ID is pre-populated from the project name.

» Version is set as 1.0 by default.

417

Workbench

New Project

Hew Project Wizard Project General Settings

Project lName | myProject

Project Description Insert a project description for documentation purposes ...

Group artifact version

Group ID [Enter Group ID...] Example: com.myorganization.myprojects @

Invalid Group 1D format
Artifact ID | myProject | Example: MyProject @

\ersion | 10 | 1.00 @

< Previous [Mext > | Cancel | ™ Finish

Figure 15.8. Entering project details

15.2.3. Define Data Model

After a project has been created you need to define Types to be used by your rules.

Select "Data Object" from the "New Item" menu.

418

Workbench

Explore « m Fepository «

Project Explol project (&

Business Process

Decision Table (Spreadsheet)
Open Project E. DRLfile
- DSL definition
Enumeration
Form
Global Variable(s)
Guided Decision Table

Guided Decision Tree
Guided Rule

Guided Fule Template
Guided Score Card
Fackage

Score Card (Spreadsheet)
Test Scenario

Uploaded file

Worlk ltem definition

Figure 15.9. Creating "Data Object"

Set the name and select a package for the new type.

419

Workbench

Create new Data Object
* Data Object MyExampleType|

Fackage org.anstis.myproject v

Q Ok Cancel

Figure 15.10. Creating a new type

Set field name and type and click on "Create" to create a field for the type.

420

Workbench

MyExample Type.java - Data Objects Say

Create new field

*ld myField Label | st o label
*Tf&"'F'E |ﬂteger v L LlSt
org.anstis.myproject. MyExampleType
Position Identifier i Label Type

Figure 15.11. Click "Create" and add the field

Click "Save" to update the model.

MyExampIeType.java - Data Objects S;e Delete Remame = Copy Validate Latest Version ™ x (| (|
Create new field Data Object Field
“ld Insert a valid Java identifier Label |cart 5 jabel
ldentifier myField
*Type v [List © Create
Label
org.anstis.myproject.MyExampleType Description
Position Identifier & Label Type
: Type Integer \
myField Integer
Equals J
Fosition 0 -

Figure 15.12. Clicking "Save"

15.2.4. Define Rule

Select "DRL file" (for example) from the "New Item" menu.

421

Workbench

- m Froject = Fepository

o __I Froject EI—
‘ Data Object |
[amp

Decision Table (Spreadsheet)
DSL definition
Enumeration
Global Variable(s)
Guided Decision Table
Guided Decision Tree

Suided Fule

Guided Rule Template
Guided Score Card
Fackage

Score Card (Spreadsheet)
Test Scenario

Uploaded file

Woarl ltem definition

Figure 15.13. Selecting "DRL file" from the "New Item" menu

Enter a file name for the new rule.

422

Workbench

Create new DRL file

*DEL file myDRELFile

Fackage org.anstis.myproject v

Use Domain Specific Language (DSL)

O Ok Cancel

[
Figure 15.14. Entering file name for rule
Enter a definition for the rule.
The definition process differs from asset type to asset type.
The full documentation has details about the different editors.
myDRLFile.drl - DRL Save Delete | Rename | Copy | Validale || LaestVersion™ | x| ¥ A

Facttypes:(hide)

ackage org.anstis.myproject;
® (B lorg.anstis myproject MyExampleType P 9 9 YRrol

import org.antis. myproject MyExampleType;
rule "one"

when

MyExampleType{ myField == "hello")

then
end|

Figure 15.15. Defining a rule

Once the rule has been defined it will need to be saved.

423

Workbench

MyExampIeType.java - Data Objects Sie Delete Pename Copy Validate | Latest Version ™ ®

Figure 15.16. Saving the rule

15.2.5. Build and Deploy

Once rules have been defined within a project; the project can be built and deployed to the
Workbench's Maven Artifact Repository.

To build a project select the "Project Editor" from the "Project” menu.

Explore = MNew - m FRepository -

B 2] [Project Editqr

. Repository Structure ackage org.anst
“roject - P Y ImpleType P d d

Import org.antis.n

Figure 15.17. Selecting "Project Editor"

Click "Build and Deploy" to build the project and deploy it to the Workbench's Maven Artifact
Repository.

When you select Build & Deploy the workbench will deploy to any repositories defined in the De-
pendency Management section of the pom in your workbench project. You can edit the pom.xml
file associated with your workbench project under the Repository View of the project explorer. De-
tails on dependency management in maven can be found here : http://maven.apache.org/guides/
introduction/introduction-to-dependency-mechanism.html

If there are errors during the build process they will be reported in the "Problems Panel".

Project: [myProject:org.anstis: 1.0] Save | Delste Rename | Copy | |Buld™ | | ®

Project Settings: Project General Settings ~

Figure 15.18. Building and deploying a project

424

Workbench

Now the project has been built and deployed; it can be referenced from your own projects as any
other Maven Artifact.

The full documentation contains details about integrating projects with your own applications.

15.3. Administration

15.3.1. Administration overview

A workbench is structured with Organization Units, VFS repositories and projects:

Workbench structure overview

Car insurance

Home insurance

Car loans

15.3.2. Organizational unit

Organization units are useful to model departments and divisions.

An organization unit can hold multiple repositories.

425

Workbench

Organizational Unit Manager

Organizational Units Associated repositories Available repositories

Accounting department =l [nsurances . -- No Repositories available --
Business department Loans
Human Resources department

L4

>

o [Nl

15.3.3. Repositories

Repositories are the place where assets are stored and each repository is organized by projects
and belongs to a single organization unit.

Repositories are in fact a Virtual File System based storage, that by default uses GIT as backend.
Such setup allows workbench to work with multiple backends and, in the same time, take full
advantage of backend specifics features like in GIT case versioning, branching and even external
access.

426

Workbench

RepositoryEditor x
& jbpm-playground
General Information
[empty]
gitz/localhost:9418/jbpm-playground b Available protocol(s):git ssh
é?master Bl - update
& uf-playground
General Information
[empty]
gitz/localhost:94 18/uf-playground Iy Awailable protocol(s):git ssh

master j [0 Update @ [elete

A new repository can be created from scratch or cloned from an existing repository.

One of the biggest advantage of using GIT as backend is the ability to clone a repository from
external and use your preferred tools to edit and build your assets.

A Warning

Never clone your repositories directly from .niogit directory. Use always the avail-
able protocol(s) displayed in repositories editor.

15.3.3.1. Repository Editor

One additional advantage to use GIT as backend is the possibility to revert your repository to a
previous state. You can do it directly from the repository editor by browsing its commit history and
clicking the Revert button.

427

Workbench

RepositoryEditor [Insurances] x

& financial / Insurances

General Information

[empty]

git://localhost:9418/Insurances I | Available protocol(s): git ssh

Commit History

removing unnecessary files - those were added due a vfs bug, already fixed
Alexandre Porcelli - 2013-10-24 1:03 AM

kie-commons merge into uberfire forces package renaming
David Gutierrez - 2013-10-16 1:35 PM

moved test related projects to a new repo: https://github.com/guvnorngtestuseri/guvnorng-testground
jervisliu - 2013-09-29 8:24 AM

package org.mortgages was removed from <type></type> tags of test scenarios
Walter Medvedeo - 2013-09-25 12:23 PM

package org.mortgages was removed from <type></type= tags
Walter Medvedeo - 2013-09-25 11:56 AM

DOO0E

15.4. Configuration

15.4.1. User management

The workbench authenticates its users against the application server's authentication and autho-
rization (JAAS).

On JBoss EAP and WildFly, add a user with the script $JBOSS_HOVE/ bi n/ add- user . sh (or. bat):

$./add-user.sh

/1 Type: Application User

/Il Realm enpty (defaults to ApplicationReal m
/1 Role: admn

There is no need to restart the application server.

15.4.2. Roles

The Workbench uses the following roles:

e admin

428

Workbench

e analyst
 developer
e manager

e user

15.4.2.1. Admin

Administrates the BPMS system.

* Manages users
* Manages VFS Repositories

» Has full access to make any changes necessary
15.4.2.2. Developer

Developer can do almost everything admin can do, except clone repositories.

« Manages rules, models, process flows, forms and dashboards

Manages the asset repository

« Can create, build and deploy projects

Can use the JBDS connection to view processes

15.4.2.3. Analyst

Analyst is a weaker version of developer and does not have access to the asset repository or the
ability to deploy projects.

15.4.2.4. Business user

Daily user of the system to take actions on business tasks that are required for the processes to
continue forward. Works primarily with the task lists.

« Does process management
» Handles tasks and dashboards
15.4.2.5. Manager/Viewer-only User

Viewer of the system that is interested in statistics around the business processes and their per-
formance, business indicators, and other reporting of the system and people who interact with
the system.

429

Workbench

* Only has access to dashboards

15.4.3. Restricting access to repositories

It is possible to restrict access to repositories using roles and organizational groups. To let an
user access a repository.

The user either has to belong into a role that has access to the repository or to a role that belongs
into an orgazinational group that has access to the repository. These restrictions can be managed
with the command line config tool.

15.4.4. Command line config tool

Provides capabilities to manage the system repository from command line. System repository
contains the data about general workbench settings: how editors behave, organizational groups,
security and other settings that are not editable by the user. System repository exists in the .niogit
folder, next to all the repositories that have been created or cloned into the workbench.

15.4.4.1. Config Tool Modes

« Online (default and recommended) - Connects to the Git repository on startup, using Git server
provided by the KIE Workbench. All changes are made locally and published to upstream when:

» "push-changes" command is explicitly executed
» "exit" is used to close the tool

« Offline - Creates and manipulates system repository directly on the server (no discard option)

15.4.4.2. Available Commands

Table 15.1. Available Commands

exit Publishes local changes, cleans up temporary
directories and quits the command line tool

discard Discards local changes without publishing
them, cleans up temporary directories and
quits the command line tool

help Prints a list of available commands
list-repo List available repositories
list-org-units List available organizational units
list-deployment List available deployments
create-org-unit Creates new organizational unit
remove-org-unit Removes existing organizational unit

430

Workbench

add-deployment

Adds new deployment unit

remove-deployment

Removes existing deployment

create-repo

remove-repo

Creates new git repository

Removes existing repository (only from con-
fig)

add-repo-org-unit

Adds repository to the organizational unit

remove-repo-org-unit

Removes repository from the organizational
unit

add-role-repo

Adds role(s) to repository

remove-role-repo
add-role-org-unit

remove-role-org-unit

Removes role(s) from repository
Adds role(s) to organizational unit

Removes role(s) from organizational unit

add-role-project

Adds role(s) to project

remove-role-project

Removes role(s) from project

push-changes

Pushes changes to upstream repository (only

in online mode)

15.4.4.3. How to use

The tool can be found from kie-config-cli-${version}-dist.zip. Execute the kie-config-cli.sh script
and by default it will start in online mode asking for a Git url to connect to (the default value is
ssh://localhost/system). To connect to a remote server, replace the host and port with appropriate
values, e.g. ssh://kie-wb-host/system.

./kie-config-cli.sh

To operate in offline mode, append the offline parameter to the kie-config-cli.sh command. This
will change the behaviour and ask for a folder where the .niogit (system repository) is. If .niogit
does not yet exist, the folder value can be left empty and a brand new setup is created.

./kie-config-cli.sh offline

15.5. Introduction

15.5.1. Log in and log out

Create a user with the role adni n and log in with those credentials.

After successfully logging in, the account username is displayed at the top right. Click on it to
review the roles of the current account.

431

Workbench

15.5.2. Home screen

After logging in, the home screen shows. The actual content of the home screen depends on the
workbench variant (Drools, jBPM, ...).

The Knowledge Life Cycle

Authoring Deploy Process Management Tasks Dashboards

Project Authoring Process Deployments Process Definitions Tasks List Process & Task Dashboard
Contributars Rule Deployments Process Instances Business Dashboards
Asset Management Jobs

Artifact repository
Administration

e

The Business Knowledge to drive your company

15.5.3. Workbench concepts

The Workbench is comprised of different logical entities:

* Part
A Part is a screen or editor with which the user can interact to perform operations.

Example Parts are "Project Explorer"”, "Project Editor", "Guided Rule Editor" etc. Parts can be
repositioned.

» Panel
A Panel is a container for one or more Parts.
Panels can be resized.
« Perspective
A perspective is a logical grouping of related Panels and Parts.

The user can switch between perspectives by clicking on one of the top-level menu items; such
as "Home", "Authoring", "Deploy" etc.

15.5.4. Initial layout

The Workbench consists of three main sections to begin; however its layout and content can be
changed.

432

Workbench

KIE Workbench

Home ~ Authoring > Deploy ~
Explore v Mewltem v Repository = Q
Project Explorer 8|2 -~
demo ¥ uf-playground * - mortgages * =]
B <default
B org
B mortgages

Open Project Editor
g DRL ~

L DATA OBJECTS ~
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
E ENUMERATION DEFINITIONS =

@ GUIDED DECISION TABLES ~ -
Messages Refresh Clear | % ¥ A

@ GUIDED RULES ~
Bankruptcy history
checks Level Text File Column Line

@ GUIDED RULES [WITHDSL) +

@ TEST SCENARIOS ~

Figure 15.19. The Workbench

The initial Workbench shows the following components:-

» Project Explorer

This provides the ability for the user to browse their configuration; of Organizational Units (in
the above "example" is the Organizational Unit), Repositories (in the above "uf-playground"” is
the Repository) and Project (in the above "mortgages” is the Project).

* Problems
This provides the user will real-time feedback about errors in the active Project.
* Empty space
This empty space will contain an editor for assets selected from the Project Explorer.

Other screens will also occupy this space by default; such as the Project Editor.

15.6. Changing the layout

The default layout may not be suitable for a user. Panels can therefore be either resized or repo-
sitioned.

This, for example, could be useful when running tests; as the test defintion and rule can be repo-
sitioned side-by-side.

433

Workbench

15.6.1. Resizing

The following screenshot shows a Panel being resized.

Move the mouse pointer over the panel splitter (a grey horizontal or vertical line in between panels).

The cursor will changing indicating it is positioned correctly over the splitter. Press and hold the
left mouse button and drag the splitter to the required position; then release the left mouse button.

KIE Werkbench

Home = Authoring ~ eploy 5 Tasks » Dashboards ~ Extensions ~
Explore v Newltem » Repository «
Project Explorer 8|z |~ Bankruptcy history.rdrl - Guided Rules
EXTENDS Mone selected o
demo ~ . uf-playground ~ -+ mortgages ~
WHEN
B <default 1. Thereis aLoanApplication [a]
E o The following exists

e There is a Bankruptcy with
& mortgages any of the following;

2. yearofoccurmence greater than j 1990
amountOwed greater than j 10000
Open Project Editor
THEN
Setvalue of LoanApplication [a] approved
1
Setvalue of LoanApplication [a] explanation
DRL ~
2 delete LoanApplication [a]
E DATA OBJECTS = Rsd (show
options..)

DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
ENUMERATION DEFINITIONS ~

@ GUIDED DECISION TABLES ~

Editor Overview Source Config
@ GUIDED RULES ~
Bankn) Messages
Level Text File

Find

Save | Delete | Rename Copy Validate | Latest Version ™

talse

has been bankrupt

Column

Refresh Clear

Line

»®

=g

L ey

B vty

@ GUIDED RULES [WITHDSL) ~ —

@ TEST SCENARIOS ~

Figure 15.20. Resizing

15.6.2. Repositioning

The following screenshot shows a Panel being repositioned.

Move the mouse pointer over the Panel title ("Guided Editor [No bad credit checks]" in this ex-

ample).

The cursor will change indicating it is positioned correctly over the Panel title. Press and hold the
left mouse button. Drag the mouse to the required location. The target position is indicated with
a pale blue rectangle. Different positions can be chosen by hovering the mouse pointer over the

different blue arrows.

434

Workbench

KIE Workbench - Mozilla Firefox

E | [@ | ©@ | ©@ | Mehilsinen Kouvola | Toi.. % | M Bug List * [© KIE Workbench % | New Tab x|+

€ redhat.com

vc||Bv ms-disease bjj QB & #

KIE Workbench

Home « Authoring ¥

Extensions Find User: admin «

Exple Mew Item + Q
Project Explorer & = ~ Bankruptcy history.rdrl - Guided Rules Save Deletz Rename Copy | Validars | LaestVersin™ % T A
demo ~ . uf-playground ~ - mortgages ~ 2
B <default>
& org

B mortgages

Open Project Editor

DRL ~

B DATA OBJECTS ~ S

g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
B ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~

) cupeoruLes ~

Messages Refresh | Clear | | % T A
Level Text File Column Line
@ GUIDED RULES (WITHDSL) - @ Build of project 'mortgages' (re.. . (1] (1]

@ TEST SCENARIOS ~

Figure 15.21. Repositioning - dragging

435

Workbench

KIE Workbench - Mozilla Firefox
E | [@ | ©@ | ©@ | Mehilsinen Kouvola | Toi.. % | M Bug List * | @ KIE Workbench x | New Tab x|+
€ redhat.com v | B> ms-disease bjj QwBe ¥ #

KIE Workbench

Home « Authoring ¥ Jep rocess Management ¥ as ards v Extensions Find

Explore = Mew ltem Repository = a
Project Explorer ellz| |a Save | Delete | Rename | Copy | Validare LaestVersion™ | % Bankruptcy history.rdrl ... save Deiets | Rename | Copy | Vaidae LasstversionY | x Y A
EXTENDS Mone selected o EXTENDS None selected o
demo ~ . uf-playground ~ - mortgages ~ 2
WHEN WHEN
B <defaults 1 There is a LoanApplication [app] 1 There is a LoanApplication [a]
. Any of the following are true: The following exists:
&= org There is an Applicant with There is a Bankruptey with
& mortgages) creditRating equal to i any of the following -
g There Is an Applicantwith 2 yearOfOccurrence greater than j
creditRating equal to B amountOwed greater than jWOOOO
Open Project Editor THEN
THEN
Setvalue of LoanApplication [app] approved a
1 ot [2ppl £t '3 Setvalue of LoanApplication [a] approved false j:
. i
Setvalue of LoanApplication [app] explanation On 1
oL o) " Setvalie of LoanApy n[al has been bankrupt o
= 2 delete LoanApplicaton [app] N
2 delete LoanApplication [a]
(show
g DATA OBJECTS ~ options..) (show
options..)
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~ &
i
B ENUMERATION DEFINITIONS ~
@ GUIDED DECISION TABLES ~
Editor Overview Source Config Editor Overview Source Config
) cupeoruLes ~
i Bankruptecy history Messages Refresh Clear x T A
No checks
no NIMNJAs =
Uikt Level Text File Column Line
@ GUIDED RULES (WITHDSL) ~ @ Build of project mortgages' (re.. ° 0 0

@ TEST SCENARIOS ~

Figure 15.22. Repositioning - complete

15.7. Authoring

15.7.1. Artifact Repository

Projects often need external artifacts in their classpath in order to build, for example a domain
model JARs. The artifact repository holds those artifacts.

The Artifact Repository is a full blown Maven repository. It follows the semantics of a Maven remote
repository: all snapshots are timestamped. But it is often stored on the local hard drive.

By default the artifact repository is stored under $WORKI NG_DI RECTORY/ r eposi t ori es/ ki e, but it
can be overridden with the system property - Dor g. guvnor . n2repo. di r. There is only 1 Maven
repository per installation.

The Artifact Repository screen shows a list of the artifacts in the Maven repository:

436

Workbench

Iploa Refres Q

Name Path LastModified Open Downlead

mortgages-0.0.1.jar 2013 Nov 16 15:46:40 Open Diownioad

example-1,0 jar 2013 Nov 16 15:08:26 pen iy

jboss-modules-1.1.1.GA jar orglibossimodulesiboss-modules 2013 Nov 16 15:07:18 en Diowrion

M.1.1.GAjjboss-modules-1.1.1.GA jar
async-examples-1.0 jar 2013 Nov 16 16:14:33 en Dawrion
HR-1.0.jar org/ibpm/HRM . WHR-1.0 jar 2013 Nov 16 16:14:13 Gpen i
M H M B 15of5

To add a new artifact to that Maven repository, either:

» Use the upload button and select a JAR. If the JAR contains a POM file under META- | NF/ maven
(which every JAR build by Maven has), no further information is needed. Otherwise, a groupld,

artifactld and version need be given too.

ane KIE Workbench
§ KIE Workbeneh Lt

o | & 127.0.0.1:8888 org kie.workbench. KIEWebapp KIEWebapp. htmifgwt

Artifact Upload

DataTypes jar Choose File..

Upload

« Using Maven, nvn depl oy to that Maven repository. Refresh the list to make it show up.

Note

This remote Maven repository is relatively simple. It does not support proxying,

mirroring, ... like Nexus or Archiva.

437

Workbench

15.7.2. Asset Editor

The Asset Editor is the principle component of the workbench User-Interface. It consists of two
main views Editor and Overview.

» The views
» A The editing area - exactly what form the editor takes depends on the Asset type.

« B : This menu bar contains various actions for the Asset; such as Saving, Renaming, Copy
etc.

» C: Different views for asset content or asset information.
« Editor shows the main editor for the asset

« Overview contains the metadata and conversation views for this editor. Explained in more
detail below.

» Source shows the asset in plain DRL. Note: This tab is only visible if the asset content can
be generated into DRL.

« Config contains the model imports used by the asset.

438

Workbench

Bankruptcy history.rdrl - Guided Rules Sa Oeiete | Rename Cop valdate Laest Version™ % ¥

EXTENDS Mone selected o
WHEN =
1. There is a LoanApplication [a] nﬂ-

The following exists:
There is a Bankruptcy with:

=]
any of the following:
2. yearOfOccurrence greater than jmgo =1 age
o
amountOwed greater than j 10000 -5

THEN ‘ &=

Setvalue of LoanApplication [a] approved false j: =]
1 L

Setvalue of LoanApplication [a] explanation has been barkrupt 5] a
2. delete LoanApplication [a] age

(show
Editor Owvarview Source Config

(~)

439

Workbench

* Overview
« A: General information about the asset and the asset's description.
"Type:" The format name of the type of Asset.
"Description:" Description for the asset.
"Used in projects:" Names the projects where this rule is used.
"Last Modified:" Who made the last change and when.
"Created on:" Who created the asset and when.
» B : Version history for the asset. Selecting a version loads the selected version into this editor.
* C: Meta data (from the "Dublin Core" standard)

« D : Comments regarding the development of the Asset can be recorded here.

440

Workbench

Bankﬂlptﬂy histﬁly.l'dn - Guided Rules Save Delete Rename Copy | Validate | Latest Version™
Type Guided Rules Comments
Description
Used in projects mortgages ':‘:"."”.‘ N
his is an example "
Last mpditied By/admin on 2015-01-15 17:12
2018-01-18 1741
Createfl on By/Walter Medvedeo on 2013-09-18 16:54
| Version history |RECETEES
Date Commit Message Author
urrent Thursday, 2015 Jan One more commit {/... admin
Eelect Wednesday, 2013 project refactoring t. Walter Medvedeo
{4 4 120f2 » b

Editar Owerview Caonfig

A B C D

Figure 15.24. The Asset Editor - Overview tab
* Metadata
* A Meta data:-
"Categories:" A deprecated feature for grouping the assets.

"Note:" A comment made when the Asset was last updated (i.e. why a change was made)

"URI:" URI to the asset inside the Git repository.

"Subject/Type/External link/Source" : Other miscellaneous meta data for the Asset.

441

Workbench

Categories: g
Mote: project refactoring to use mortgages package

URI:
git/imaster@uf-playground/martgages/sre/mainfresources/org/mortgages/Bankruptoy e 20histony.rdrl
Subject:

Type:

External link:

Source:

Figure 15.25. The Metadata tab

15.7.3. Project Explorer

The Project Explorer provides the ability to browse different Organizational Units, Repositories,
Projects and their files.

15.7.3.1. Initial view

The initial view could be empty when first opened.

442

Workbench

Project Explorer e

demo = kie-repository = --- =

CUpen Project Editor

Figure 15.26. An empty initial view

The user may have to select an Organizational Unit, Repository and Project from the drop-down

boxes.
Project Explorer 8 o
demo « kie-repository = --- =

Search... Q

jbpm-playground

Open Projet

Kie-repfsitary

uf-playground
—tioiems [A

Figure 15.27. Selecting a repository

The default configuration hides Package details from view.

In order to reveal packages click on the icon as indicated in the following screen-shot.

443

Workbench

Project Explorer g2 (A

demo « uf-playground ~ = mortgages « .:—.*

B= <=default=
B org
I mortgages

Figure 15.28. Showing packages

After a suitable combination of Organizational Unit, Repository, Project and Package have been
selected the Project Explorer will show the contents. The exact combination of selections depends
wholly on the structures defined within the Workbench installation and projects. Each section

contains groups of related files.

444

Workbench

Project Explorer L B

demo = uf-playground = mortgages =
B <default=

& org
B mortgages

Cpen Project Editor

DRL -

]
-

g DATA OBJECTS -

DOMAIN SPECIFIC LANGUAGE DEFINITIONS

L

ENUMERATION DEFINITIONS ~

\ i |

GUIDED DECISION TABLES -

)

[E]T GUIDED RULES ~

L&

Bankruptcy history
Mo bad credit checks
no MINJAS

Underage
Figure 15.29. Expanded asset group

@ GUIDED RULES [WITHDSL) «

@ TEST SCENARIOS ~

Workbench

15.7.3.2. Different views

Project Explorer supports multiple views.

* Project View
A simplified view of the underlying project structure. Certain system files are hidden from view.
* Repository View

A complete view of the underlying project structure including all files; either user-defined or
system generated.

Views can be selected by clicking on the icon within the Project Explorer, as shown below.

Both Project and Repository Views can be further refined by selecting either "Show as Folders"
or "Show as Links".

[
>

Project Explorer o

demo « uf-pla % Project View
Fepository View
B <default>

& org Show as Links [

= MOME s Show as Folders

& Download Project

Open Project Edit == Download Repository

Figure 15.30. Switching view

446

Workbench

15.7.3.2.1. Project View examples

Project Explorer & o
demo « uf-playground = = mortgages -
B= <=default=

s org
B mortgages

Figure 15.31. Project View - Folders

Project Explorer & o
demo = uf-playground = morgages -

<default> ' org ' mortgages

Figure 15.32. Project View - Links

447

Workbench

15.7.3.2.2. Repository View examples

Project Explorer o

Cpen Froject Editor

demo ~ uf-playground = = mortgages -

B mortgages
B src
B= main
m ava
B resources
B fest
4 pom.xml
[4 projectimports

Figure 15.33. Repository View - Folders

Project Explorer =

OUpen Project Editor

demo = uf-playground = morgages -

mortgages ' src main resources

[META-INF A @ &

] arg h A @ B

Figure 15.34. Repository View - Links

[

0

448

Workbench

15.7.3.3. Download Project or Repository

Download Download and Download Repository make it possible to download the project or repos-
itory as a zip file.

Project Explorer &

0
>

demo ~ uf-pla * Froject View g
Fepository View
<default> ' org

Sh Link
= mortgages * Show as Links

Show as Folders

& Download Project I

Cpen Project Edit
P] . & Download Repository

Figure 15.35. Repository and Project Downloads

15.7.3.4. Branch selector

A branch selector will be visible if the repository has more than a single branch.

449

Workbench

Project Explorer 8| A
demo -~ uf-playground ~ mortgages ~ &
Open Froject Editor testBranch -

master | _|'|.,_I

Figure 15.36. Branch selector

15.7.3.5. Copy, Rename, Delete and Download Actions

Copy, rename and delete actions are available on Links mode, for packages (in of Project View)
and for files and directories as well (in Repository View). Download action is available for directo-
ries. Download downloads the selected the selected directory as a zip file.

« A:Copy
¢ B: Rename
e C: Delete

e D : Download

450

Workbench

Project Explorer ¢ -~
demo -« uf-playground ~ mortgages - g
cdefault> ' org

I martgages ?AB

Figure 15.37. Project View - Package actions

451

Workbench

Project Explorer 8 = A
Cpen Project Editor
demo « uf-playground = mortgages - =

mortgages ' src main @ java @ org

= mortgages A= &

Figure 15.38. Repository View - Files and directories actions

Warning

Workbench roadmap includes a refactoring and an impact analyses tools, but cur-
renctly doesn't have it. Until both tools are provided make sure that your changes
(copy/rename/delete) on packages, files or directories doesn't have a major impact
on your project.

In cases that your change had an unexcepcted impact, Workbench allows you to
restore your repository using the Repository editor.

15.7.4. Project Editor

The Project Editor screen can be accessed from Project Explorer. Project Editor shows the settings
for the currently active project.

Unlike most of the workbench editors, project editor edits more than one file. Showing everything
that is needed for configuring the KIE project in one place.

452

Workbench

Project: [mortgages:mortgages:0.0.1]

Froject Settings: Project General Settings ¥

Project General Settings
Dependencies

Metadata
Fra ftgages project

Knowledge bases and sessions

Metadata

Import Suggestions
Metadata

Group artifact version

Group ID mortgages
Artifact 1D mortgages
Version ID 00.1

t a sampls proje

Save | Buid & Deploy

ct for KIE workbench

Example: com.myorganization myprojects @
Example: MyProject @
100 @

Figure 15.39. Project Screen and the different views

15.7.4.1. Build & Deploy

Build & Depoy builds the current project and deploys the KJAR into the workbench internal Maven

repository.

15.7.4.2. Project Settings

Project Settings edits the pom.xml file used by Maven.

15.7.4.2.1. Project General Settings

General settings provide tools for project name and GAV-data (Group, Artifact, Version). GAV
values are used as identifiers to differentiate projects and versions of the same project.

Project Settings: Project General Settings

Project General Setiings

Project Name Mortgages

Project Description Just a samp

Group artifact version

ct for KIE workbench

Group 1D mortgages Example: com.myorganization. myprojects @
Artifact ID mortgages Example: MyProject @
Version 1D 001 100 @

Figure 15.40. Project Settings

453

Workbench

15.7.4.2.2. Dependencies

The project may have any number of either internal or external dependencies. Dependency is a
project that has been built and deployed to a Maven repository. Internal dependencies are projects
build and deployed in the same workbench as the project. External dependencies are retrieved
from repositories outside of the current workbench. Each dependency uses the GAV-values to
specify the project name and version that is used by the project.

Dependencies: Dependancies list =

Add Add from

Dependencies
repository

Group ID Artifact ID Version ID

org project anotherProject 1.0 i

Figure 15.41. Dependencies

15.7.4.2.3. Metadata

Metadata for the pom.xml file.

15.7.4.3. Knowledge Base Settings

Knowledge Base Settings edits the kmodule.xml file used by Drools.

Add Rename Delete Make Default

This one is default

Include me

Included Knowledge Bases

Add Delete
Include me

Packages

Add = Delete

org.mortgages

Equals Behavior
@ Identity
Equality
Event Processing Mode
@ Stream

Knowledge Sessions

Add
Name Default State Clock

Session 1 v

Session 2

Session 3 Stateful v Realtime

Figure 15.42. Knowledge Base Settings

454

Workbench

@ Note
For more information about the Knowledge Base properties, check the Drools Ex-
pert documentation for kmodule.xml.

15.7.4.3.1. Knowledge bases and sessions

Knowledge bases and sessions lists the knowledge bases and the knowledge sessions specified
for the project.

15.7.4.3.1.1. Knowledge base list
Lists all the knowledge bases by name. Only one knowledge base can be set as default.
15.7.4.3.1.2. Knowledge base properties

Knowledge base can include other knowledge bases. The models, rules and any other content in
the included knowledge base will be visible and usable by the currently selected knowledge base.

Rules and models are stored in packages. The packages property specifies what packages are
included into this knowledge base.

Equals behavior is explained in the Drools Expert part of the documentation.
Event processing mode is explained in the Drools Fusion part of the documentation.
15.7.4.3.1.3. Knowledge sessions

The table lists all the knowledge sessions in the selected knowledge base. There can be only one
default of each type. The types are stateless and stateful. Clicking the pen-icon opens a popup
that shows more properties for the knowledge session.

15.7.4.3.2. Metadata

Metadata for the kmodule.xml

15.7.4.4. Imports

Settings edits the project.imports file used by the workbench editors.

Imports: Import Suggestions +

Type Remove
org test.Person
java.util ArrayList

org.test.Address © Remove

Figure 15.43. Imports

455

Workbench

15.7.4.4.1. Import Suggestions

Import Suggestions lists imports that are used as suggestions when using the guided editors the
workbench has. Making it easier to work with the workbench, as there is no need to type each
import in each file that uses the import.

15.7.4.4.2. Metadata

Metadata for the project.imports file.

15.7.5. Validation

The Workbench provides a common and consistent service for users to understand whether files
authored within the environment are valid.

15.7.5.1. Problem Panel

The Problems Panel shows real-time validation results of assets within a Project.

When a Project is selected from the Project Explorer the Problems Panel will refresh with validation
results of the chosen Project.

When files are created, saved or deleted the Problems Panel content will update to show either
new validation errors, or remove existing if a file was deleted.

Here an invalid DRL file has been created and saved.

The Problems Panel shows the validation errors.

456

Workbench

DRL Editor [Dummy rule] Save | Delete | Rename | Copy | Validate x
Show facttypes package org.mortgages

Some invalid DRL

DRL Metadata

Problems x

Level Text File Column Line

[ERR 107] Line 3:0
mismatched input 'Some’
expecting one of the
%] P) g Dummy rule.drl 0 3
following tokens: [package,
import, global, declare,

function, rule, query]-

Parser returned a null
%] Dummy rule.drl 0 0
Package

Figure 15.44. The Problems Panel

15.7.5.2. On demand validation
It is not always desirable to save a file in order to determine whether it is in a valid state.
All of the file editors provide the ability to validate the content before it is saved.

Clicking on the 'Validate' button shows validation errors, if any.

457

Workbench

Validation errors

€@ [ERR 107] Line 3:0 mismatched input 'Some’ expecting one of the following
tokens: Tpackage, import, global, declare, function, rule, query]".

@ Parser retumed a null Package

15.7.6. Data Modeller

15.7.6.1. First steps to create a data model

By default, a data model is always constrained to the context of a project. For the purpose of
this tutorial, we will assume that a correctly configured project already exists and the authoring
perspective is open.

To start the creation of a data model inside a project, take the following steps:

1. From the home panel, select the authoring perspective and use the project explorer to browse
to the given project.

458

Workbench

KIE Workbench

Explore ~ New Item ~ Repository ~ 2a Q
Project Explorer B NES

demo ~ | Purchases ~ | purchases ~ =]
& <default>

& org

& jbpm
& examples
& purchases

Open Project Editor

6 DATA OBJECTS ~
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 15.45. Go to authoring perspective and select a project

2. Open the Data Modeller tool by clicking on a Data Obiject file, or using the "New Item -> Data
Object" menu option.

H DATA OBJECTS ~

PurchaseQrder

PurchaseOrderHeader

PurchaseOrderLine

Figure 15.46. Click on a Data Object

This will start up the Data Modeller tool, which has the following general aspect:

459

Workbench

PurchaseOrder.java - Data Objects save || Delete || Rename
Create new field Data Object
AL nsert a valid Java id Label | |nge
Identifier
Label
Purchase Order (org.jbpm.examples.purchases.PurchaseOrder) Description
Identifier Label Type
Package
description Description String
Superclass
header Header Purchase Order Header

Copy

Field

Validate Latest Version ™

PurchaseOrder

Purchase Order

org.jopm.examples.purc

java.lang.Object

I et o I proels &ISPH parameters

requiresCFOApproval Boolean TypeSafe

total Total Double ClassReactive

PropertyReactive

Role
Timestamp
Duration

Expires

Remotable

QOverview Source

Figure 15.47. Data modeller overview

The "Editor" tab is divided into the following sections:

* The new field section is dedicated to the creation of new fields.

Create new field

*® i o :
Id nsert a valid Java identifier Label | |nsert a label

Figure 15.48. New field creation

» The Data Object's "field browser" section displays a list with the data object fields.

460

v

@ © © © @ ©

(-]

Workbench

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)

Identifier Label Type

description Description String

header Header Purchase Order Header
S R e

requiresCFOApproval Boolean

total Total Double

Figure 15.49. The Data Object's field browser

» The "Data Object / field property editor" section. This is the rightmost section of the Data Mod-
eller editor and visualizes a tabbed pane. The "Data object” tab allows the user to edit the class
level properties of the data object, and the "Field" tab allows the edition of the properties for
the currently selected field.

461

Workbench

Data object Field

Identifier PurchaseQOrder

Label Purchase Order

Description

Superclass java.lang.Object x

Drools & JEPM parameters:

TypeSafe v 9
ClassReactive 7]
Property Reactive 7]
Role *r @
Timestamp r 9
Duration *r @
Expires o
Remotable 7]

Figure 15.50. The data object/field property editor

The "Source" tab shows an editor that allows the visualization and modification of the generated
java code.

« Round trip between the "Editor" and "Source" tabs is possible, and also source code preserva-
tion is provided. It means that not matter where the Java code was generated (e.g. Eclipse,
Data modeller), the data modeller will only update the necessary code blocks to maintain the
model updated.

462

Workbench

PurchaseOrder.java - Java Source Files Save

jpackage org.jbpm.

S

examples.purchases;

* This class was automatically generated by the data modeler tool.

#.Jl,‘

@org.kie.api.definition.type.Label(value = "Purchase Order")
public class PurchaseOrder implements java.io.Serializable {

static final long serialVersionUID = 1L;

@org.kie.api.
@org.kie.api.
private java.

@org.kie.api.
@org.kie.api.
private java.

@org.kie.api.
@org.kie.api.
private java.

@org.kie.api.
@org.kie.api.
private org.]j

@org.kie.api.
private java.

definition.type.Label(value = "Total")
definition.type.Position(value = 3)
lang.Double total;

definition.type.Label(value = "Description®)
definition.type.Position(value = @)
lang.String description;

definition.type.Label(value = "Lines")
definition.type.Position(value = 2)
util.List<org.jbpm.examples.purchases.PurchaseOrderLine> lines;

definition.type.Label(value = "Header")
definition.type.Position(value = 1)
bpm.examples.purchases.PurchaseOrderHeader header;

definition.type.Position(value = 4)
lang.Boolean requiresCFOApproval;

public PurchaseOrder() {

}

Editor Overview

Figure 15.51. Source editor

The "Overview" tab shows the standard metadata and version information as the other workbench

editors.

15.7.6.2. Data Objects

A data model consists of data objects which are a logical representation of some real-world data.
Such data objects have a fixed set of modeller (or application-owned) properties, such as its in-
ternal identifier, a label, description, package etc. Besides those, a data object also has a variable
set of user-defined fields, which are an abstraction of a real-world property of the type of data that

this logical data object represents.

Creating a data object can be achieved using the workbench "New Item - Data Object" menu

option.

Delete

Rename

Copy

Validate

463

Latest Version ™

4]

Workbench

Create new Data Object

* Data Object

Package | org.mortgages x

Figure 15.52. New Data Object menu option

Both resource name and location are mandatory parameters. When the "Ok" button is pressed a
new Java file will be created and a new editor instance will be opened for the file edition.

15.7.6.3. Properties & relationships

Once the data object has been created, it now has to be completed by adding user-defined prop-
erties to its definition. This can be achieved by providing the required information in the "Create
new field" section (see fig. "New field creation™), and clicking on the "Create" button when finished.
The following fields can (or must) be filled out:

» The field's internal identifier (mandatory). The value of this field must be unique per data object,
i.e. if the proposed identifier already exists within current data object, an error message will be
displayed.

» Alabel (optional): as with the data object definition, the user can define a user-friendly label for
the data object field which is about to be created. This has no further implications on how fields
from objects of this data object will be treated. If a label is defined, then this is how the field will
be displayed throughout the data modeller tool.

» A field type (mandatory): each data object field needs to be assigned with a type.
This type can be either of the following:
1. A 'primitive java object' type: these include most of the object equivalents of the standard

Java primitive types, such as Boolean, Short, Float, etc, as well as String, Date, BigDecimal
and Biglnteger.

464

Workbench

*Type v [List

BigDecimal
Biginteger
Boolean
Byte
dentifie Character
Date
escripti el
Float
Integer
Long
Short
ines String

1eader

Figure 15.53. Primitive object field types

2. A 'data object' type: any user defined data object automatically becomes a candidate to be
defined as a field type of another data object, thus enabling the creation of relationships
between them. A data object field can be created either in 'single' or in 'multiple’ form, the
latter implying that the field will be defined as a collection of this type, which will be indicated
by selecting "List" checkbox.

Purchase Order (org.jppm.examples.purchases.PurchaseCOrder)
Purchase Order Header (org.jppm.examples.purchases.PurchaseOrderHeader)
Purchase Order Line {org.jbpm.examples.purchases.PurchaseOrderLine)

Figure 15.54. Data object field types

3. A 'primitive java' type: these include java primitive types byte, short, int, long, float, double,
char and boolean.

boolean
byte
char
double
float

int

long
short

1]

Figure 15.55. Primitive field types

465

Workbench

When finished introducing the initial information for a new field, clicking the 'Create’ button will add
the newly created field to the end of the data object's fields table below:

Exampie.java - Data Db]ects Save Delete Rename @ Copy | Validate Latest Version ™ x
Create new field Data Object Field
“1d nsert a valid Java identifier Label| |nsert a label
. Identifier title

Label de

Tutorial Example Entity (org.joppm.examples.purchases.Example) Description

Identifier Label Type
Title

Equals [+]
Position @

Figure 15.56. New field has been created

The new field will also automatically be selected in the data object's field list, and its properties will
be shown in the Field tab of the Property editor. The latter facilitates completion of some additional
properties of the new field by the user (see below).

At any time, any field (without restrictions) can be deleted from a data object definition by clicking
on the corresponding X' icon in the data object's fields table.

15.7.6.4. Additional options

As stated before, both data objects as well as fields require some of their initial properties to be
set upon creation. These are by no means the only properties data objects and fields have. Below
we will give a detailed description of the additional data object and field properties.

466

Workbench

15.7.6.4.1. Additional data object properties ("Data object tab")

Data object Field

Identifier PurchaseQOrder

Label Purchase Order

Description

Superclass java.lang.Object ¥

Drools & |]BPM parameters:

TypeSafe r 9
ClassReactive (7]
PropertyReactive 7]
Role r 9
Timestamp r 9
Duration r 9
Expires o
Remotable (7]

Figure 15.57. The data object's properties

 Description: this field allows the user to introduce some kind of description for the current data
object, for documentation purposes only. As with the label property, this is conceptual informa-
tion that will not influence the use or treatment of this data object or its instances in any way.

» TypeSafe: this property allows to enable/disable the type safe behaviour for current type. By
default all type declarations are compiled with type safety enabled. (See Drools for more infor-
mation on this matter).

467

Workbench

ClassReactive: this property allows to mark this type to be treated as "Class Reactive" by the
Drools engine. (See Drools for more information on this matter).

PropertyReactive: this property allows to mark this type to be treated as "Property Reactive" by
the Drools engine. (See Drools for more information on this matter).

Role: this property allows to configure how the Drools engine should handle instances of this
type: either as regular facts or as events. By default all types are handled as a regular fact, so
for the time being the only value that can be set is "Event” to declare that this type should be
handled as an event. (See Drools Fusion for more information on this matter).

Timestamp: this property allows to configure the "timestamp" for an event, by selecting one of
his attributes. If set the engine will use the timestamp from the given attribute instead of reading
it from the Session Clock. If not, the engine will automatically assign a timestamp to the event.
(See Drools Fusion for more information on this matter).

Duration: this property allows to configure the "duration" for an event, by selecting one of his
attributes. If set the engine will use the duration from the given attribute instead of using the
default event duration = 0. (See Drools Fusion for more information on this matter).

Expires: this property allows to configure the "time offset" for an event expiration. If set, this value
must be a temporal interval in the form: [#d][#h][#m][#s][#[ms]] Where [] means an optional
parameter and # means a numeric value. e.g.: 1d2h, means one day and two hours. (See Drools
Fusion for more information on this matter).

Remotable: If checked this property makes the data object available to be used with jBPM
remote services as REST, JMS and WS. (See jBPM for more information on this matter).

468

Workbench

15.7.6.4.2. Additional field properties ("Field tab")

Data Object Field

Identifier header

Label Header

Description

Type Purchase Order Header v List
Equals a
Position 1

Figure 15.58. The data object's field properties

 Description: this field allows the user to introduce some kind of description for the current field,
for documentation purposes only. As with the label property, this is conceptual information that
will not influence the use or treatment of this data object or its instances in any way.

» Equals: checking this property for a data object field implies that it will be taken into account, at
the code generation level, for the creation of both the equals() and hashCode() methods in the
generated Java class. We will explain this in more detail in the following section.

 Position: this field requires a zero or positive integer. When set, this field will be interpreted
by the Drools engine as a positional argument (see the section below and also the Drools
documentation for more information on this subject).

15.7.6.5. Generate data model code.

The data model in itself is merely a visual tool that allows the user to define high-level data struc-
tures, for them to interact with the Drools Engine on the one hand, and the jBPM platform on
the other. In order for this to become possible, these high-level visual structures have to be trans-

469

Workbench

formed into low-level artifacts that can effectively be consumed by these platforms. These artifacts
are Java POJOs (Plain Old Java Obijects), and they are generated every time the data model is
saved, by pressing the "Save" button in the top Data Modeller Menu. Additionally when the user
round trip between the "Editor" and "Source" tab, the code is auto generated to maintain the con-
sistency with the Editor view and vice versa.

Save Delete Rename | Copy @ Validate Latest Version ™

Figure 15.59. Save the data model from the top menu

The resulting code is generated according to the following transformation rules:

The data object's identifier property will become the Java class's name. It therefore needs to
be a valid Java identifier.

« The data object's package property becomes the Java class's package declaration.

» The data object's superclass property (if present) becomes the Java class's extension decla-
ration.

e The data object's label and description properties will translate into the Java annotations
"@org.kie.api.definition.type.Label" and "@org.kie.api.definition.type.Description”, respective-
ly. These annotations are merely a way of preserving the associated information, and as yet
are not processed any further.

e The data object's role property (if present) wil be translated into the
"@org.kie.api.definition.type.Role" Java annotation, that IS interpreted by the application plat-
form, in the sense that it marks this Java class as a Drools Event Fact-Type.

« The data object's type safe property (if present) wil be translated into the
"@org.kie.api.definition.type. TypeSafe Java annotation. (see Drools)

« The data object's class reactive property (if present) will be translated into the
"@org.kie.api.definition.type.ClassReactive Java annotation. (see Drools)

« The data object's property reactive property (if present) will be translated into the
"@org.kie.api.definition.type.PropertyReactive Java annotation. (see Drools)

e The data object's timestamp property (if present) will be translated into the
"@org.kie.api.definition.type.Timestamp Java annotation. (see Drools)

e The data object's duration property (if present) will be translated into the
"@org.kie.api.definition.type.Duration Java annotation. (see Drools)

470

Workbench

« The data object's expires property (if present) will be translated into the
"@org.kie.api.definition.type.Expires Java annotation. (see Drools)

e The data object's remotable property (if present) will be translated into the
"@org.kie.api.remote.Remotable Java annotation. (see jBPM)

A standard Java default (or no parameter) constructor is generated, as well as a full parameter
constructor, i.e. a constructor that accepts as parameters a value for each of the data object's
user-defined fields.

The data object's user-defined fields are translated into Java class fields, each one of them with
its own getter and setter method, according to the following transformation rules:

» The data object field's identifier will become the Java field identifier. It therefore needs to be
a valid Java identifier.

« The data object field's type is directly translated into the Java class's field type. In case the field
was declared to be multiple (i.e. 'List’), then the generated field is of the "java.util.List" type.

« The equals property: when it is set for a specific field, then this class property will be anno-
tated with the "@org.kie.api.definition.type.Key" annotation, which is interpreted by the Drools
Engine, and it will 'participate' in the generated equals() method, which overwrites the equals()
method of the Object class. The latter implies that if the field is a 'primitive’ type, the equals
method will simply compares its value with the value of the corresponding field in another in-
stance of the class. If the field is a sub-entity or a collection type, then the equals method will
make a method-call to the equals method of the corresponding data object's Java class, or of
the java.util.List standard Java class, respectively.

If the equals property is checked for ANY of the data object's user defined fields, then this also
implies that in addition to the default generated constructors another constructor is generated,
accepting as parameters all of the fields that were marked with Equals. Furthermore, generation
of the equals() method also implies that also the Object class's hashCode() method is overwrit-
ten, in such a manner that it will call the hashCode() methods of the corresponding Java class
types (be it 'primitive’ or user-defined types) for all the fields that were marked with Equals in
the Data Model.

« The position property: this field property is automatically set for all user-defined fields, starting
from 0, and incrementing by 1 for each subsequent new field. However the user can freely
changes the position among the fields. At code generation time this property is translated into
the "@org.kie.api.definition.type.Position" annotation, which can be interpreted by the Drools
Engine. Also, the established property order determines the order of the constructor parameters
in the generated Java class.

As an example, the generated Java class code for the Purchase Order data object, corresponding
to its definition as shown in the following figure purchase_example.jpg is visualized in the figure at
the bottom of this chapter. Note that the two of the data object's fields, namely 'header' and 'lines'
were marked with Equals, and have been assigned with the positions 2 and 1, respectively).

471

Workbench

Create new field

*Id

*Type

Purchase Order (org.jbpm.examples.purchases.PurchaseOrder)

Identifier

Type
- S 3 Eackage org.jopm.examples.purc
description Description String

header

lines

requiresCFOApproval

total

Figure 15.60.

Label

Header

Lines

Total

package org.j bpm exanpl

/**

* This cl
*/
@rg. kie
@rg. kie
@rg. ki e.
@rg. kie
@rg. kie
public cl
{

static fi

@rg. ki e.
@rg. ki e.
private j

@rg. kie.
@rg. ki e.
private j

ass

.api.
.api.
api .
.api.
.api.

ass

nal

api .
api .
ava.

api .
api .

ava

Data Object Field

| Identifier PurchaseOrder
Label Purchase Order
Description

Purchase Order Header i java.lang.Object
Purchase Order Line [List] Drools & |BPM parameters:
Boolean TypeSafe true
Double ClassReactive
PropertyReactive
Role EVENT
Timestamp
Duration
Expires 2d
Remotable

Purchase Order configuration

es. pur chases;

was automatically generated by the data nodel er tool.

definition
definition
definition
definition

Pur chaseOr

long seria
definition

definition

definition
definition

.type. Label (" Purchase Order")

.type. TypeSafe(true)

.type. Rol e(org. ki e. api . definition.type. Rol e. Type. EVENT)
.type. Expires("2d")

renot e. Renot abl e

der inplenments java.io.Serializable

| VersionU D = 1L;

.type. Label ("Total ")
.type. Posi tion(3)

| ang. Doubl e total;

.type. Label ("Descri ption")
.type. Position(0)

.lang. String description;

472

O © © © © ©

Workbench

@rg. ki e. api . definition.type.Label ("Lines")

@rg. ki e.api.definition.type.Position(2)

@rg. ki e.api.definition.type.Key

private java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne> |i nes;

@rg. ki e. api . definition.type.Label ("Header")

@rg. ki e.api . definition.type.Position(1)

@rg. ki e. api . definition.type.Key

private org.jbpm exanpl es. purchases. PurchaseOr der Header header;

@rg. ki e.api .definition.type. Position(4)
private java.l ang. Bool ean requiresCFOApproval ;

publ i c PurchaseOrder()

{

}

public java.lang. Doubl e get Total ()

{

return this.total;

}

public void setTotal (java.l ang. Doubl e total)

{

this.total = total;

}

public java.lang. String getDescription()

{

return this.description;

}

public void setDescription(java.lang.String description)

{

this.description = description;

}

public java.util.List<org.jbpm exanpl es. purchases. PurchaseOr der Li ne> get Li nes()
{

return this.lines;

}

public void setLines(java.util.List<org.jbpm exanpl es. purchases. PurchaseOr derLi ne> |ines)
{

this.lines = lines;

}

public org.jbpm exanpl es. purchases. Pur chaseOr der Header get Header ()
{

return this. header;

}

public void setHeader (org.jbpm exanpl es. purchases. Pur chaseOr der Header header)
{

thi s. header = header;

}

public java.lang. Bool ean get Requi r esCFOApproval ()

473

Workbench

{

return this.requiresCFOApproval ;
}

public void setRequiresCFQApproval (j ava. |l ang. Bool ean requi resCFOAppr oval)
{

this. requiresCFOApproval = requiresCFQApproval ;

}

public PurchaseOrder(java.lang. Double total, java.lang.String description,
java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,

org.j bpm exanpl es. pur chases. Pur chaseOr der Header header,

java. | ang. Bool ean requi r esCFQAppr oval)

{

this.total = total;
this.description = description;
this.lines = lines;

t hi s. header = header;
t hi s. requi resCFQApproval = requi resCFQApproval ;
}

public PurchaseOrder(java.lang. String description,

org. j bpm exanpl es. pur chases. Pur chaseOr der Header header,

java. util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,
java.lang. Doubl e total, java.lang.Bool ean requiresCFQApproval)

{

this.description = description;

t hi s. header = header;

this.lines = lines;

this.total = total;

this. requiresCFOApproval = requiresCFQApproval ;
}

public PurchaseOrder(
java.util.List<org.jbpm exanpl es. purchases. PurchaseOrderLi ne> |ines,
or g.j bpm exanpl es. pur chases. Pur chaseOr der Header header)

{

this.lines = lines;

t hi s. header = header;

}

@verride

publ i c bool ean equal s(Obj ect o)
{

if (this == o)

return true;

if (o ==null || getdass() != o.getC ass())

return false;

org. j bpm exanpl es. pur chases. PurchaseOrder that = (org.jbpm exanpl es. purchases. PurchaseOr der) o;

if (lines '=null ? !lines.equals(that.lines) : that.lines !'= null)
return false;
if (header !'= null ? !header.equal s(that.header) : that.header != null)

return fal se;
return true;

}

@verride

public int hashCode()
{

474

Workbench

int result = 17;

result = 31 * result + (lines != null ? lines.hashCode() : 0);
result = 31 * result + (header != null ? header.hashCode() : 0);
return result;

}

}

15.7.6.6. Using external models

Using an external model means the ability to use a set for already defined POJOs in current
project context. In order to make those POJOs available a dependency to the given JAR should
be added. Once the dependency has been added the external POJOs can be referenced from
current project data model.

There are two ways to add a dependency to an external JAR file:

« Dependency to a JAR file already installed in current local M2 repository (typically associated
the the user home).

» Dependency to a JAR file installed in current KIE Workbench/Drools Workbench "Guvnor M2
repository”. (internal to the application)

15.7.6.6.1. Dependency to a JAR file in local M2 repository
To add a dependency to a JAR file in local M2 repository follow this steps.

15.7.6.6.1.1. Open the Project Editor for current project and select the Dependen-
cies view.

KIE Workbench

Explore + NewItem ~ Tools » Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete Rename Copy | Build®&Deploy™ @ x | 7
demo ~ ' Purchases = / purchases ~ =]
Dependendies: Dependencies list ~
& <default>
& org
&= jopm Add Add from
B examples Dependends repository
& purchases
@) cumepruLes ~ Group ID Artifact ID Version Delete

g JAVA SOURCE FILES +
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 15.61. Project editor.

475

Workbench

15.7.6.6.1.2. Click on the "Add" button to add a new dependency line.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete | Rename Copy | Build&Deploy™ | x| 7

demo ~ ' Purchases = / purchases 2 B -
Dependendies: Dependencies list ~

B <default>

B org
& jbpm Add Add fr
Dependencies om
& examples repository
Bs purchases

@) cumepruLes ~ Group ID Artifact ID Version Delete

g JAVA SOURCE FILES + 1]
Example
PurchaseOrder
PurchaseOrderHeader
PurchaseOrderLine

Figure 15.62. New dependency line.

15.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2
repository.

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete Rename Copy | Build&Deploy™ | x| 7
demo v / Purchases ~ / purchases ~ 2 : -
Dependendies: Dependencies list ~
B <default>
B org
&= jbpm Add Add fr
Dependencies om
Bs examples repository
Bs purchases
@) cumepruLes ~ Group ID Artifact ID Version Delete
n
g JAVA SOURCE FILES + external-model external-model 10 i
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 15.63. Dependency line edition.

15.7.6.6.1.4. Save the project to update its dependencies.

When project is saved the POJOs defined in the external file will be available.

476

Workbench

KIE Workbench

Explore + NewlItem ~ Tools ~ Repository ~ Q
Project Explorer o Project: [purchase-approval:org.jbpm:1.0] Save | Delete | Rename | Copy | Build&Deploy™ | x ||~
demo ~ | Purchases ~ / purchases ~ =] . -
Dependendies: Dependencies list ~
B <default>
B org
&= jbpm Add Add fr
dencies om
Bs examples Depm repository
Bs purchases
@) cumepruLes ~ Group ID Attifact ID Version Delete
n
g JAVA SOURCE FILES + external-model external-model 1.0 i
Example
PurchaseOrder
PurchaseOrderHeader

PurchaseOrderLine

Figure 15.64. Save project.
15.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
To add a dependency to a JAR file in current "Guvnor M2 repository" follow this steps.

15.7.6.6.2.1. Open the Maven Artifact Repository editor.

KIE Workbench

Home Authoring ~
Upload Project Authoring Q
Artifact repository
Administration =
Name Path LastModified Open Download
guvnor-asset-mgmt-project-6.2.0-20141... org/guvnor/guvnor-asset-mgmt-project/... 2014 Oct 14 10:14:25 Open Download

Figure 15.65. Guvnor M2 Repository editor.

477

Workbench

15.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded
using the Browse button.

Open File
il < wmedvede | development | projects | external-model | target
Location: | external-model-1.0.jar
Places Name ¥ Size Modified
Q Search classes 02/19/2014
‘& Recently Used [generated-sources 02/19/2014
wmedvede maven-archiver 10/01/2013
Desktop surefire 10/24/2013
LI File System & external-model-1.0.jar 2.6 kB 10/24/2013
b =
Cancel Open

Figure 15.66. File browser.

15.7.6.6.2.3. Upload the file using the Upload button.

Artlfact uplo B The page at localhost:8080 says:

Uploaded successfully

C:\fakepath\extern

Figure 15.67. File upload success.

15.7.6.6.2.4. Guvnor M2 repository files.

Once the file has been loaded it will be displayed in the repository files list.

478

Workbench

KIE Workbench

Upload Refresh Q
Name Path LastModlfled Open Download
guvnor-asset-mgmt-project-6.2.0-2014... org/guvnor/guvnor-asset-mgmi-project/... 2014 Oct 14 10:14:25 Open Download
external-model-1.0.jar external-model/external-model/1.0/ext. .. 2014 Oct 14 18:43:19 Open Downioad

Figure 15.68. Files list.

15.7.6.6.2.5. Provide a GAV for the uploaded file (optional).

If the uploaded file is not a valid Maven JAR (don't have a pom.xml file) the system will prompt
the user in order to provide a GAV for the file to be installed.

Artifact) B The page at localhost:8080 says:
The Jar does not contain a valid POM file.

é L g Please specify GAV info manually.
C:\fakep

0K

Figure 15.69. Not valid POM.

Artifact upload

C:\fakepathlexternal-model-1.0.jz Choose File... = Upload

GroupID: external-model

Artifactip: €xternal-model

VersionID:| 1.0

Figure 15.70. Enter GAV manually.

479

Workbench

15.7.6.6.2.6. Add dependency from repository.

Open the project editor (see bellow) and click on the "Add from repository" button to open the JAR
selector to see all the installed JAR files in current "Guvnor M2 repository”. When the desired file
is selected the project should be saved in order to make the new dependency available.

Name Path LastModlfied

guvnor-asset-mgmt... org/guvnor/guvnor-a... 2014 Oct 14 10:14:25

external-model-1.0.jar external-model/exter... 2014 Oct 14 19:22:53

Figure 15.71. Select JAR from "Maven Artifact Repository".

15.7.6.6.3. Using the external objects

When a dependency to an external JAR has been set, the external POJOs can be used in the
context of current project data model in the following ways:

» External POJOs can be extended by current model data objects.

« External POJOs can be used as field types for current model data objects.

The following screenshot shows how external objects are prefixed with the string " -ext- " in order
to be quickly identified.

KIE Workbench

Explore + New Item ~ Repository ~ Q
Project Explorer % 2~ PurchaseOrder.java - Data Objects Save || Delete | | Rename || Copy || Validate || LatestVersion ™ | | x | ~
demo ~ / Purchases ~ / purchases ~
Create new field Data Object Field
& <default>
& org id useExternalType Label
& jbpm Identifier lines
& examples “Type v |0 List © Create
SeRiichieses [Tutorial Example Entity (org jbpm.examples.purchases.Example) ~bel Lines
- ext - externalmodel. Product
Purch - ext - externalmodel. UseExternalBean .
plbes - oxt - externalmodel.UselnnerClasses soription
- - exi - externalmodel.UselnnerClasses$1
Open Project Editor Identifie - ext - org kie.external.ClaseExternaAbstracta
- ext - org kie.external ClaseExternaFinal o @ 1
descripti - €t - org kie.external ClaseExternalFinal2 i Purchase Order Line (o1 ¥ LS
- ext - org kie.external.ClaseExternalinterface 1 7
neader | - ¥t - Org Kie.external ExtemalClientBean pals e
g DATA OBJECTS | eader | . ext - org kie.external HelloWorld e
Example e ?{(‘I:_o_rg kie.external MaxFieldsForCanstructor1 2 @

Figure 15.72. Identifying external objects.

480

Workbench

15.7.6.7. Roundtrip and concurrency

Current version implements roundtrip and code preservation between Data modeller and Java
source code. No matter where the Java code was generated (e.g. Eclipse, Data modeller), the
data modeller will only create/delete/update the necessary code elements to maintain the mod-
el updated, i.e, fields, getter/setters, constructors, equals method and hashCode method. Also
whatever Type or Field annotation not managed by the Data Modeler will be preserved when the
Java sources are updated by the Data modeller.

Aside from code preservation, like in the other workbench editors, concurrent modification sce-
narios are still possible. Common scenarios are when two different users are updating the model
for the same project, e.g. using the data modeller or executing a 'git push command' that modifies
project sources.

From an application context's perspective, we can basically identify two different main scenarios:
15.7.6.7.1. No changes have been undertaken through the application

In this scenario the application user has basically just been navigating through the data model,
without making any changes to it. Meanwhile, another user modifies the data model externally.

In this case, no immediate warning is issued to the application user. However, as soon as the user
tries to make any kind of change, such as add or remove data objects or properties, or change
any of the existing ones, the following pop-up will be shown:

481

Workbench

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 15.73. External changes warning

The user can choose to either:

« Re-open the data model, thus loading any external changes, and then perform the modification
he was about to undertake, or

 Ignore any external changes, and go ahead with the modification to the model. In this case,
when trying to persist these changes, another pop-up warning will be shown:

482

Workbench

_—— - - - - __________—_—_—_—_——3

Error

User =system > updated current project default: //master@uf-playground
/mortgages data model,

Force Save Re-open Cancel

Figure 15.74. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open™ will
discard any local changes and reload the model.

A Warning

"Force Save" overwrites any external changes!

15.7.6.7.2. Changes have been undertaken through the application

The application user has made changes to the data model. Meanwhile, another user simultane-
ously modifies the data model from outside the application context.

In this alternative scenario, immediately after the external user commits his changes to the asset
repository (or e.g. saves the model with the data modeller in a different session), a warning is
issued to the application user:

483

Workbench

Error

User <system> updated current project default: //master@uf-playground
/mortgages data model.

Re-open

Figure 15.75. External changes warning

As with the previous scenario, the user can choose to either:

» Re-open the data model, thus losing any modifications that where made through the application,
or

« Ignore any external changes, and continue working on the model.
One of the following possibilities can now occur:

» The user tries to persist the changes he made to the model by clicking the "Save" button in
the data modeller top level menu. This leads to the following warning message:

484

Workbench

—— - ______—_——3

Error

User <system= updated current project default: //master@uf-playground
/mortgages data model.

Force Save Re-open Cancel

Figure 15.76. Force save / re-open

The "Force Save" option will effectively overwrite any external changes, while "Re-open” will
discard any local changes and reload the model.

15.7.7. Categories Editor

Categories allow assets to be labelled (or tagged) with any number of categories that you define.
Assets can belong to any number of categories. In the below diagram, you can see this can in
effect create a folder/explorer like view of categories. The names can be anything you want, and
are defined by the Workbench administrator (you can also remove/add new categories).

@ Note
Categories do not have the same role in the current release of the Workbench
as they had in prior versions (up to and including 5.5). Projects can no longer be
built using a selector to include assets that are labelled with certain Categories.
Categories are therefore considered a deprecated feature.

485

Workbench

15.7.7.1. Launching the Categories Editor

The Categories Editor is available from the Repository menu on the Authoring Perspective.

Project - category
Categoriqe: G0 A —

C Edit categories

Current categories: g+
@ = categoryl
= subcategoryl.1
—category2

Mew category | Rename selected | Delete selected

Figure 15.77. Launching Categories Editor

15.7.7.2. Managing Categories

The below view shows the administration screen for setting up categories (there) are no categories
in the system by default. As the categories can be hierarchical you chose the "parent" category
that you want to create a sub-category for. From here categories can also be removed (but only
if they are not in use by any current versions of assets).

Categories Editor Save

Current categories: @i+

Edit categories

B = categoryl
= subcategoryl.1
= category2

Mew category | Rename selected | Delete selected

Figure 15.78. Managing categories

486

Workbench

Generally categories are created with meaningful name that match the area of the business the
rule applies to (if the rule applies to multiple areas, multiple categories can be attached).

15.7.7.3. Adding Categories to assets

Assets can be assigned Categories using the MetaData tab on the assets' editor.

When you open an asset to view or edit, it will show a list of categories that it currently belongs to
If you make a change (remove or add a category) you will need to save the asset - this will create
a new item in the version history. Changing the categories of a rule has no effect on its execution.

Guided Editor [Bankruptcy history] save Delete Rename Copy \Vaidate @ % <

=] Metadata

Title:Bankruptcy history.rdrl
Categoriesicategoryl/subcategoryl. 1] <=
Last modified2013-11-07 11:46
by:admin
Mote:
Created on:2013-09-18 14:54
Created by:Walter Medvedeo
Formatguided rule
URLgit#/master@uf-playground/mortgages/src/main/resources/org/morgages/Bankruptcyde20history.rdrl

+ Other meta data
+ Version history
+ Description

+ Discussion

Edit Source Config Metadata

Figure 15.79. Adding Categories to an asset

15.8. Embedding Workbench In Your Application

As we already know, Workbench provides a set of editors to author assets in different formats.
According to asset’s format a specialized editor is used.

One additional feature provided by Workbench is the ability to embed it in your own (Web) Appli-
cations thru it's standalone mode. So, if you want to edit rules, processes, decision tables, etc...
in your own applications without switch to Workbench, you can.

In order to embed Workbench in your application all you'll need is the Workbench application
deployed and running in a web/application server and, from within your own web applications, an
iframe with proper HTTP query parameters as described in the following table.

487

Workbench

Table 15.2. HTTP query parameters for standalone mode

the header that should
be displayed (use-
ful for context menu
headers).

Parameter Name Explanation Allow mul- Example
tiple values
standalone With just the pres- no (none)
ence of this parameter
workbench will switch
to standalone mode.
path Path to the asset to be no git://master@uf-
edited. Note that asset playground/todo.md
should already exists.
perspective Reference to an exist- no org.guvnor.m2repo.clie
ing perspective name.
header Defines the name of yes ComplementNavArea

Note

g

15.9. Asset Management

15.9.1. Asset Management Overview

Path and Perspective parameters are mutual exclusive, so can't be used together.

nt.perspectives.Gu

This section of the documentation describes the main features included that contribute to the Asset

Management functionality provided in the KIE Workbench and KIE Drools Workbench. All the
features described here are entirely optional, but the usage is recommended if you are planning
to have multiple projects. All the Asset Management features try to impose good practices on

the repository structure that will make the maintainace, versioning and distribution of the projects

simple and based on standards. All the Asset Management features are implemented using jBPM
Business Processes, which means that the logic can be reused for external applications as well

as adapted for domain specific requirements when needed.

15.9.2. Managed vs Unmanaged Repositories

Since the creation of the assets management features repositories can be classified into Managed

or Unmanaged.

488

Workbench

15.9.2.1. Managed Repositories

All new assets management features are available for this type of repositories. Additionally a
managed repository can be "Single Project" or "Multi Project".

A "Single Project” managed repository will contain just one Project. And a "Multi Project" managed
repository can contain multiple Projects. All of them related through the same parent, and they
will share the same group and version information.

15.9.2.2. Unmanaged Repositories

Assets management features are not available for this type or repositories and they basically
behaves the same as the repositories created with previous workbench versions.

15.9.3. Asset Management Processes

There are 4 main processes which represent the stages of the Asset Management feature: Con-
figure Repository, Promote Changes, Build and Release.

15.9.3.1. Configure Repository

The Configure Repository process is in charge of the post initialization of the repository. This
process will be automatically triggered if the user selects to create a Managed Repository on the
New repository wizzard. If they decide to use the governance feature the process will kick in and
as soon as the repository is created. A new development and release branches will be created.
Notice that the first time that this process is called, the master branch is picked and both branches
(dev and release) will be based on it.

~

- Fa - - Relaas
4 Aporove if . Beset Mamt (Create Dev Create Release
(Approve o AssetMgmt | gl { dotlsy - B L
\) - needed A P Brocess Start Bronch Branch

3 L J - A

= -
. Asset Mgmt
Not approved ——DO s y Process End

By default the asset management feature is not enabled so make sure to select Managed Repos-
itory on the New Repository Wizzard. When we work inside a managed repository, the develop-
ment branch is selected for the users to work on. If multiple dev branches are created, the user
will need to pick one.

15.9.3.2. Promote Changes Process

When some work is done in the developments branch and the users reach a point where the
changes needs to be tested before going into production, they will start a new Promote Changes

489

Workbench

process so a more technical user can decide and review what needs to be promoted. The users
belonging to the "kiemgmt" group will see a new Task in their Group Task List which will contain
all the files that had being changed. The user needs to select the assets that will be promoting
via the Ul. The underlying process will be cherry-picking the commits selected by the user to the
release branch. The user can specify that a review is needed by a more technical user.

This process can be repeated multiple times if needed before creating the artifacts for the release.

Requires rework

~
> o . Asset Mgmt | S te - Select Assets - 4
A Process Start - L —® get commits Te Premote A

I—

Nat approved Asset Momt
Promote Assets ————— = LESRL AT

15.9.3.3. Build Process

The Build process can be triggered to build our projects from different branches. This allows us
to have a more flexible way to build and deploy our projects to different runtimes.

15.9.3.4. Release Process

The release process is triggered at any time when the user decided that it is time to generate a
release of the project that he/she is working on. This process will build the project (calling the Build
Process) and it will update all the maven artifacts to the next version.

490

Workbench

= —

15.9.4. Usage Flow

This section describes the common usage flow for the asset management features showing all

the screens involved.

The first contact with the Asset Management features starts on the Repository creation.

New Repository

" Basic Seftings
* Repository Name

Managed Repository Settings

myrepo

* In Organizational Unit
demo j

Managed Repository

A managed repository provides projact-level version control and project branches for managing the release cycle.

< Previous Next » Cancel & Finish

If the user chooses to create a Managed Respository a new page in the wizzard is enabled:

491

Workbench

New Repository

¢ Basic Settings Repository Type:
¢ Managed Repository Sellings Single-project Repository

Create a single managed project in this repository. Use this option

r simple or self-contained projects.
© Multi-project Repository

ication. The projects in this repository will be managed together

and will al

Project Branches:
B Automatically Configure Branches (master/devireleasea)
Project Settings:
* Name
myrepo

Description

* Group
demo

* Artifact
myrepo

* Version

1.0.0-SMAPSHOT

< Previous Next » Cancel

When a managed repository is created the assets management configuration process is automat-
ically launched in order to create the repository branches, and the corresponding project structure
is also created.

15.9.5. Repository Structure

Once a repository has been created it can be managed through the Repository Structure Screen.

To open the Repository Structure Screen for a given repository open the Project Authoring Per-
spective, browse to the given repository and select the "Repository -> Repository Structure” menu
option.

KIE Workbench

Explore ¥ New Item v - Q
Project Explorer Repository Structure
demo v | jbpm-playground v ' Evaluation - a
B <default>

Open Project Editor

Figure 15.80. Repository Structure Menu

492

Workbench

15.9.5.1. Single Project Managed Repository

The following picture shows an example of a single project managed repository structure.

KIE Workbench

Explore ~ NewItem ~ Repository ~
Configure Promote Release x

c ~ Repository Structure ManagedSingle (master) - > ManagedSingle

Project Explorer o
demo ~ / ManagedSingle ~ ' ManagedSingle ~ g
g <default>
£ demo e Repository Groupld [EELE
& managedsingle Repository ArtifactId

Repository Version EHHY

Open Project Editor master ~

Figure 15.81. Single Project Managed Repository

15.9.5.2. Multi Project Managed Repository

The following picture shows an example of a multi project managed repository structure.

KIE Werkbench

Explore ~ NewlItem ~ Repository ~

Project Explorer @ 2 |~ Repository Structure ManagedMulti (master) - > ManagedMulti:dem... configwe = Promote Release % ~ A
demo ~ ' ManagedMulti ~ / Project3 ~ =]
B <default>
= demo
B=EpmEc Repository ArtifactId
Repository Version [E
master ~

Open Project Editor

e prg— © Add Module

Module

. Project1 & Edit ©Delete
Project2 & Edit O Delete
Project3 & Edit O Delete

Figure 15.82. Multi Project Managed Repository

15.9.5.3. Unmanaged Repository

The following picture shows an example of an unmanaged repository structure.

493

Workbench

KIE Workbench

Explore New Item ~ Repository «
Project Explorer & =
demo ~ / Unmanaged ~ / Project2 ~ =]

= <default>
m demo

Open Project Editor

© New Project

TP T———— Module

2>
=
=
3
j+1)
=1
[+1}
&
o
(1]
o
o
@,
o,
Qo
2
=
=
3
j+1)
=1
[+1}
&
=
]
[+1}
o
[0}
ks

Configure Promote

Release x Y oA

Project1

Project2

Figure 15.83. Unmanaged Repository

15.9.6. Managed Repositories Operations

& Edit
& Edit

The following picture shows the screen areas related to managed repositories operations.

KIE Werkbench

@ Delete
@ Delete

Explore ~ NewItem ~ Repository =

Project Explorer % = ~ Repository Structure ManagedMulti (master) - > ManagedMult{..

demo ~ /' ManagedMulti ~ ' Project3 = 2

& <default>
= demo

Repository Groupld [EELE
B project3

Repository ArtifactId
Repository Version [EH

Open Project Editor master ¥

Modules

dev-1.0.0

release-1.0
© Add Module

Module

Configure | Promote

Release x Y A

4 Project1

Project2

Project3

Figure 15.84. Managed Repositories Operations

15.9.6.1. Branch Selector

[Edit
[Edit
[Edit

© Delete

© Delete

© Delete

The branch selector lets to switch between the different branches created by the Configure Repos-

itory Process.

494

Workbench

master =

dev-1.0.0

release-1.C

Figure 15.85. Branch Selector

15.9.6.2. Project Operations

From the repository structure screen it's also possible to create, edit or delete projects from current
repository.

© Add Module

Figure 15.86. Add Project to current structure

[Edit @ Delete
Edit @ Delete

[Edit & Delate

Figure 15.87. Edit/Delete projects from current structure

15.9.6.3. Launch Assets Management Processes

The assets management processes can also be launched from the Project Structure Screen.

Configure | Promote | Release

Figure 15.88. Launch Assets Management Processes

15.9.6.3.1. Launch the Configure Repository Process

Filling the parameters bellow a new instance of the Configure Repository can be started. (see
Configure Repository Process)

495

Workbench

Configure Repository

Repository
ManagedMulti

Source Branch

dev-1.0.0
* Dev Branch
dev

The branch will be called (dev)-1.0.0-SNAPSHOT
* Release Branch

release

The branch will be called (release)-1.0.0-SNAPSHOT

* Version

1.0.0-SNAPSHOT

The current repository version is: 1.0.0-SNAPSHOT

O Ok Cancel

Figure 15.89. Configure Repository Process Parameters
15.9.6.3.2. Launch the Promote Changes Process

Filling the parameters bellow a new instance of the Promote Changes Process can be started.
(see Promote Changes Process)

496

Workbench

Promote Assets

Repository
ManagedMulti

Source Branch

dev-1.0.0

* Target Branch
Select a Branch -

e

Figure 15.90. Promote Changes Process Parameters
15.9.6.3.3. Launch the Release Process

Filling the parameters bellow a new instance of the Release Process can be started. (see Release
Process)

497

Workbench

Release Configuration

Repository
ManagedMulti

Source Branch

dev-1.0.0

* Release Version

1.0.0

The current repository version is: 1.0.0-SNAPSHOT

* Deploy To Runtime

* |User Name

kie-admin

* Password

* Server URL
http://hp-di380pg8-01.lab.eng.br

Figure 15.91. Release Process Parameters

498

Workbench

15.9.7. Remote APIs

TBD

499

Chapter 16. Authoring Assets

16.1. Creating a package

Configuring packages is generally something that is done once, and by someone with some ex-
perience with rules/models. Generally speaking, very few people will need to configure packages,
and once they are setup, they can be copied over and over if needed. Package configuration is
most definitely a technical task that requires the appropriate expertise.

All assets live in "packages” in Drools Workbench - a package is like a folder (it also serves as
a "namespace”). A home folder for rule assets to live in. Rules in particular need to know what
the fact model is, what the namespace is etc.

So while rules (and assets in general) can appear in any number of categories, they only live in
one package. If you think of Drools Workbench as a file system, then each package is a folder,
and the assets live in that folder - as one big happy list of files.

To create an empty package select "Package" from the "New item" menu.

500

Authoring Assets

Explore - m Tools ~ Repository -

Project Explor Business Process o
- Decision Table (Spreadsheet) =
demo ~ ' ufs pRL file =
DSL definition
& <default> _
B org Enumeration
B mg Form

Global Variable(s)
Guided Decision Table

] Guided Rule
— DRL .

’ Guided Rule Template
e Guided Score Card
7

EHI.IIIEFIATI Project
Score Card (Spreadsheet)

EU'“E“ DE! Test Scenario
Uploaded file

= Jouioen Ryl Work Item definition

Figure 16.1. New Package

16.1.1. Empty package

An empty package can be created by simply specifying a name.

501

Authoring Assets

Create new Package
* Resource Name myPackageName

Location default://master@uf-playground/mortgages/src/main
fresources/org/mortgages

.....................................

O Ok Cancel

.....................................

Figure 16.2. New empty Package

Once the Package has been created it will appear in the Project Explorer.

Project Explorer o
demo ~ ' uf-playground ~ ' mortgages ~ =
B <default>

= org
& mortgages

& mypackagename

Figure 16.3. Project Explorer showing new Package

16.1.2. Copy, Rename and Delete Packages

As already mentioned on Project Explorer section, users can copy, rename or delete a package
directly from Project Explorer.

502

Authoring Assets

As you can see in the following screenshots, those operations behaves very similar to counter
part actions in most workbench editors.

Copy

& Copy this item

MNew narne:‘_

Check in mrnment:‘_

[Create copy H Cancel J

Figure 16.4. Copying a Package

Rename

& Rename this item

Mew name:l

Check in mrrlrnent:l

l Rename item “ Cancel J

Figure 16.5. Renaming a Package

503

Authoring Assets

& Rename this item

Mew name:|

Check in oornment:l

| Rename item [Cancel |

Figure 16.6. Excluding a Package

16.2. Business rules with the guided editor

Guided Rules are authored with a Ul to control and prompt user input based on knowledge of
the object model.

This can also be augmented with DSL sentences.

16.2.1. Parts of the Guided Rule Editor

The Guided Rule Editor is composed of three main sections.

The following diagram shows the editor in action. The following descriptions apply to the lettered
boxes in the diagram:-

504

Authoring Assets

File Edit Source E Status: [Draft]

Attributes Edit

WHEN
1 There is a LoanApplication [app]

ﬂ N
Any of the following are true: E a
There is an Applicant with: L
-]

creditRating equal to =i oK
v

2. applicationDate after d |C. a
There is an Applicant with a
creditRating equal to = | Sub prime 5, @

1 Setvalue of LoanApplication [app] approved false Ll
) Setvalue of LoanApplication [app] explanation Only AA o
2. Retract LoanApplication [app] a
(options)
Aftributes:

salience 10 |
H -

Figure 16.7. The guided BRL editor

A : The different parts of a rule:-

* The "WHEN" part, or conditions, of the rule.
e The "THEN" action part of the rule.

« Optional attributes that may effect the operation of the rule.

16.2.2. The "WHEN" (left-hand side) of a Rule

B : This shows a pattern which is declaring that the rule is looking for a "LoanApplication” fact (the
fields are listed below, in this case none). Another pattern, "Applicant”, is listed below "LoanAppli-
cation". Fields "creditRating" and "applicationDate" are listed. Clicking on the fact name ("LoanAp-
plication") will pop-up a list of options to add to the fact declaration:-

« Add more fields (e.qg. their "location").
» Assign a variable name to the fact (which you can use later on if needs be)
« Add "multiple field" constraints - i.e. constraints that span across fields (e.g. age > 42 or risk > 2).

C : The "minus" icon ("[-]") indicates you can remove something. In this case it would remove
the whole "LoanApplication" fact declaration. Depending upon the placement of the icon different
components of the rule declaration can be removed, for example a Fact Pattern, Field Constraint,

other Conditional Element ("exists", "not exists", "from" etc) or an Action.

D : The "plus" icon ("+") allows you to add more patterns to the condition or the action part of the
rule, or more attributes. In all cases, a popup option box is provided. For the "WHEN" part of the
rule, you can choose from a list of Conditional Elements to add:

505

Authoring Assets

« A Constraint on a Fact: it will give you a list of facts.
« "The following does not exist": the fact plus constraints must not exist.

» "The following exists": at least one match should exist (but there only needs to be one - it will
not trigger for each match).

« "Any of the following are true": any of the patterns can match (you then add patterns to these
higher level patterns).

» "From": this will insert a new From Conditional Element to the rule.

* "From Accumulate": this will insert a new Accumulate Conditional Element to the rule.
» "From Collect": this will insert a new Collect Conditional Element to the rule.

* "From Entry-point": this allows you to define an Entry Point for the pattern.

* "Free Form DRL": this will let you insert a free chunk of DRL.
If you just put a fact (like is shown above) then all the patterns are combined together so they
are all true ("and").

E : This shows the constraint for the "creditRating" field. Looking from left to right you find:-
« The field name: "creditRating". Clicking on it you can assign a variable name to it, or access
nested properties of it.

« A list of constraint operations ("equal to" being selected): The content of this list changes de-
pending on the field's data type.

« The value field: It could be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
e String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biginteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biglnteger field. BigDecimal val-
ues are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
¢ Enumeration -> Listbox

* Boolean -> Checkbox

506

Authoring Assets

2. A "formula": this is an expression which is calculated (this is for advanced users only)

3. An Expression - this will let you use an Expression Builder to build up a full mvel expression.
(At the moment only basic expressions are supported)

F : This shows the constraint for the "applicationDate" field. Looking from left to right you find:

* The field name: "applicationDate".
« A list of constraint operations: "after" being selected.

« A "clock" icon. Since the "applicationDate" is a Date data-type the list of available operators
includes those relating to Complex Event Processing (CEP). When a CEP operator is used this
additional icon is displayed to allow you to enter additional CEP operator parameters. Clicking
the "clock" will cycle the available combinations of CEP operator parameters.

@ Note

Complex Event Processing operators are also available when the Fact has been
declared as an event. Refer to the "Fact Model" chapter of this user-guide for details
on how to add annotations to your Fact model. Events have access to the full range
of CEP operators; Date field-types are restricted to "after", "before" and "coincides".

@ Note

Facts annotated as Events can also have CEP sliding windows defined.

16.2.2.1. Adding Patterns

When clicking on the + button of the WHEN section, a new popup will appear letting you to add
a new Pattern to the Rule. The popup will looks similar to the image below. In this popup you
could select the type of Pattern to add by selecting one of the list items. In the list you will have an
entry for each defined Fact Type, in addition to the already mentioned Conditional Elements like
"exists", "doesn't exist", "from", "collect”, "accumulate", "from entry-point" and "free form DRL".
Once you have selected one of this elements, you can add a new Pattern by clicking on the "Ok"
button. The new pattern will be added at the bottom of the rule's left hand side. If you want to

choose a different position, you can use the combobox placed at the top of the popup.

You can also open this popup by clicking in the [+] button from a Pattern's action toolbar. If that
is the case, the pop-up that appears wouldn't constraint the position combobox, because the new
Pattern will be added just after the Pattern where you clicked.

507

Authoring Assets

Add a condition to the rule...

Position: Bottom +|@

When the credit rating is rating
When the applicant dates is after dos
When the applicant approval is bool
When the ages is less than num
Applicant ...

Bankruptcy ...

IncomeSource ...

LoanApplication ...

The following does not exist ...

The following exists ...

Any of the following are true ...
From ...

From Accumulate ...

From Collect ...

From Entry Point ...

Free form drl

Figure 16.8. Adding Patterns

16.2.2.2. Adding constraints

The below dialog is what you will get when you want to add constraints to a fact. In the top half are
the simple options: you can either add a field constraint straight away (a list of fields of the applic-
able fact will be shown), or you can add a "Multiple field constraint" using AND or OR operands.
In the bottom half of the window you have the Advanced options: you can add a formula (which
resolves to True or False - this is like in the example above: "... salary > (2500 * 4.1)". You can
also assign a Variable name to the fact (which means you can then access that variable on the

action part of the rule, to set a value etc).

A& DK | Cancel |

508

Authoring Assets

Modify constraints for Applicant 4
B Modify constraints for Applicant
Add a restriction on a field |
Multiple field constraint . ~|®
Advanced options:

Add a new formula style expression MNew formula

Expression editor Expression editor |

Yariable name Set

Figure 16.9. Adding constraints

16.2.3. The "THEN" (right-hand side) of a Rule

H : This shows an "action" of the rule, the Right Hand Side of a rule consists in a list of actions.
In this case, we are updating the "explanation” field of the "LoanApplication” fact. There are quite
a few other types of actions you can use:-

 Insert a completely new Fact and optionally set a field on the Fact.
The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:

 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal val-
ues are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
e Enumeration -> Listbox
» Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

509

Authoring Assets

3. A "formula™: this is an expression which is calculated (this is for advanced users only)

* Logically insert a completely new Fact (see "Truth Maintenance" in the Expert documentation)
and optionally set a field on the Fact.

1. A literal value: depending on the field's data type different components will be displayed:
The value field can be one of the following:-
a. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-
type (e.g. a byte can hold values from -128 to 127). BigDecimal and Biginteger da-
ta-types are also supported. Please ensure the appropriate Class has been imported
in the Package configuration. The import will be added automatically if a POJO model
has been uploaded that exposes an accessor or mutator for a BigDecimal or Biginteger
field. BigDecimal values are automatically suffixed with "B" indicating to the underlying
Engine that the literal value should be interpreted as a BigDecimal. Bigintegers are suf-
fixed with "I". The user does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox

b. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being
set must match the data-type of the variable.

c. A "formula™: this is an expression which is calculated (this is for advanced users only)

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)
« Modify a field of an existing fact (which tells the engine the fact has changed).
The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

» Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglnteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded

510

Authoring Assets

that exposes an accessor or mutator for a BigDecimal or Biginteger field. BigDecimal val-
ues are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Bigintegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
* Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula": this is an expression which is calculated (this is for advanced users only)

» Setafield on afact (in which case the engine doesn't know about the change - normally because
you are setting a result).

The value field can be one of the following:-
1. A literal value: depending on the field's data type different components will be displayed:
 String -> Textbox

« Any numerical value -> Textbox restricting entry to values valid for the numerical sub-type
(e.g. a byte can hold values from -128 to 127). BigDecimal and Biglinteger data-types are
also supported. Please ensure the appropriate Class has been imported in the Package
configuration. The import will be added automatically if a POJO model has been uploaded
that exposes an accessor or mutator for a BigDecimal or Biglnteger field. BigDecimal val-
ues are automatically suffixed with "B" indicating to the underlying Engine that the literal
value should be interpreted as a BigDecimal. Biglntegers are suffixed with "I". The user
does not need to enter the suffix.

» Date -> Calendar
* Enumeration -> Listbox
» Boolean -> Checkbox

2. A variable bound to a Fact or Field in the left-hand side. The data-type of the field being set
must match the data-type of the variable.

3. A "formula™: this is an expression which is calculated (this is for advanced users only)
» Delete a fact from the Engine's Working Memory.
» Add Facts to existing global lists.

» Call a method on a variable.

511

Authoring Assets

» Write a chunk of free form code.

16.2.4. Optional attributes

The attributes section of a rule provides the means to define metadata and attributes (such as

"salience", "no-loop" etc).

Click on the "+" icon to add a new metadata or attribute definition. Each defined will appear listed
in this section.

Click on the "-" icon beside each metadata or attribute to remove it.

16.2.4.1. Salience

Each rule has a salience value which is an integer value that defaults to zero. The salience value
represents the priority of the rule with higher salience values representing higher priority. Salience
values can be positive or negative.

16.2.5. Pattern/Action toolbar

G : Next to each Pattern or Action you will find a toolbar containing 3 buttons.

The first "+" icon lets you insert a new Pattern/Action at an arbitrary location. The other "+" icons
allow you to insert a new Pattern/Action below that you have selected.

The remaining arrow icons allow you to move the current Pattern/Action up or down.

16.2.6. User driven drop down lists

ok

AA A
oK
Sun%’ime v

Figure 16.10. Data enumeration showing as a drop down list

Note that is it possible to limit field values to items in a pre-configured list. This list is either defined
by a Java enumeration or configured as part of the package (using a data enumeration to provide
values for the drop down list). These values can be a fixed list, or (for example) loaded from a
database. This is useful for codes, and other fields where there are set values. It is also possible

512

Authoring Assets

to have what is displayed on screen, in a drop down, be different to the value (or code) used in a
rule. See the section on data enumerations for how these are configured.

It is possible to define a list of values for one field that are dependent upon the value of one or
more other fields, on the same Fact (e.g. a list of "Cities" depending on the selected "Country
region"). Please refer to the section on "Enumerations” for more information.

16.2.7. Augmenting with DSL sentences

If the package the rule is part of has a DSL configuration, when when you add conditions or actions,
then it will provide a list of "DSL Sentences" which you can choose from - when you choose one,
it will add a row to the rule - where the DSL specifies values come from a user, then a edit box
(text) will be shown (so it ends up looking a bit like a form). This is optional, and there is another
DSL editor. Please note that the DSL capabilities in this editor are slightly less then the full set
of DSL features (basically you can do [when] and [then] sections of the DSL only - which is no
different to drools 3 in effect).

The following diagram shows the DSL sentences in action in the guided editor:

WHEN

A template captures |yalues ina form style of input®
THEN

Action sentence template®
(options)

Figure 16.11. DSL in guided editor

513

Authoring Assets

16.2.8. A more complex example:

WHEMN o
There is a Person [$p] with:

1 birthDate | less than ;[19-Dec-1982
)= |carbrand == "Ford" && salary = (2500 * 4.1)
There is an Address with:
> street| equal to E| Eim st.
From $p.addresses. Choose... =l

The following does not exist:
There is a Person with:

3.
salary| equal to :ll'.ﬂ.'l= tp.salary * 2
There is a Mumber [$totalAddresses]
From Accumulate
There is an Address [$a] with:
zipCode | equal to Fl43240
4.
From $p.addresses. Choose... |
Customn Code Function
Function:| count{%a)
THEN e
Insert Person: %
1.
name $p.name
(show
options...}

Figure 16.12. A more complex BRL example

In the above example, you can see how to use a mixture of Conditional Elements, literal values,
and formulas. The rule has 4 "top level" Patterns and 1 Action. The "top level" Patterns are:

1. A Fact Pattern on Person. This Pattern contains two field constraints: one for birthDate field
and the other one is a formula. Note that the value of the birthDate restriction is selected from
a calendar. Another thing to note is that you can make calculations and use nested fields in the
formula restriction (i.e. car.brand). Finally, we are setting a variable name ($p) to the Person
Fact Type. You can then use this variable in other Patterns.

E] Note
The generated DRL from this Pattern will be:

514

Authoring Assets

$p : Person(birthDate < "19-Dec-1982" , eval (car.brand == "Ford" && salary
> (2500 * 4.1)))

2. AFrom Pattern. This condition will create a match for every Address whose street name is "Elm
St." from the Person's list of addresses. The left side of the from is a regular Fact Pattern and
the right side is an Expression Builder that let us inspect variable's fields.

3. A "Not Exist" Conditional Element. This condition will match when its content doesn't create a
match. In this case, its content is a regular Fact Pattern (on Person). In this Fact Pattern you
can see how variables ($p) could be used inside a formula value.

4. A "From Accumulate” Conditional Element. This is maybe one of the most complex Patterns
you can use. It consist in a Left Pattern (It must be a Fact Pattern. In this case is a Number
Pattern. The Number is named $totalAddresses), a Source Pattern (Which could be a Fact
Pattern, From, Collect or Accumulate conditional elements. In this case is an Address Pattern
Restriction with a field restriction in its zip field) and a Formula Section where you can use any
built-in or custom Accumulate Function (in this example a count() function is used). Basically,
this Conditional Element will count the addresses having a zip code of 43240 from the Person's
list of addresses.

16.3. Templates of assets/rules

The guided rule editor is great when you need to define a single rule, however if you need to
define multiple rules following the same structure but with different values in field constraints or
action sections a "Rule Template" is a valuable asset. Rule templates allow the user to define a

515

Authoring Assets

rule structure with place-holders for values that are to be interpolated from a table of data. Literal
values, formulae and expressions can also continue to be used.

Rule Templates can often be used as an alternative for Decision Tables in Drools Workbench.

16.3.1. Creating a rule template

To create a template for a rule simply select the "Guided Rule Template" from the "New Item"
menu.

16.3.2. Define the template

Once a rule template has been created the editor is displayed. The editor takes the form of the
standard guided editor explained in more detail under the "Rule Authoring" section. As the rule is
constructed you are given the ability to insert "Template Keys" as place-holders within your field
constraints and action sections. Literal values, formulae and expressions can continue to be used
as in the standard guided editor.

Field value 2
o Field value
Literal value: Literal value | @
Template key: Template key | €Y
Advanced options:
Aformula: Mew Formula | @
Expression editor: Expression editor | @

Figure 16.13. Template Key popup

The following screenshot illustrates a simple rule that has been defined with a "Template Key"
for the applicants' maximum age, minimum age and credit rating. The template keys have been
defined as "$max_age", "$min_age" and "$cr" respectively.

516

Authoring Assets

Guided Template [t1]

EXTENDS MNone selected
WHEN
There is an Applicant with:
age less than
L. age greater than or equal to

creditRating €qual to
THEN

(show
options...)

Edit Source Data Config Metadata

j Emax_age

j Emin_age

j Ser

Figure 16.14. Rule template in the guided editor

16.3.3. Defining the template data

%
8%,8
e FOE
=E>|E=

o

When you have completed the definition of your rule template you need to enter the data that will
be used to interpolate the "Template Key" place-holders. Drools Workbench provides the facility
to enter data in a flexible grid within the guided editor screen. The data entry section is located

on the Data tab within the editor.

The rule template data grid is very flexible; with different pop-up editors for the underlying fields'
data-types. Columns can be resized and sorted; and cells can be merged and grouped to facilitate

rapid data entry.

One row of data interpolates the "Template Key" place-holders for a single rule; thus one row

becomes one rule.

517

Authoring Assets

518

Authoring Assets

Guided Template [t1]

Add row...
H : _Ema:{_age Smin_age Bor
gs B 25 20 Al
g B 25 20 OK
gs B 25 20 Sub prime
g B 35 25 Al
gs B 35 25 OK
g B 35 25 Sub prime
gs B 45 35 Al
g B 45 35 OK
gs B 45 35 Sub prime
Edit Source Data Config Metadata

...........................

Figure 16.15. Template data grid

519

Authoring Assets

16.3.3.1. Cell merging

The icon in the top left of the grid toggles cell merging on and off. When cells are merged those in
the same column with identical values are merged into a single cell. This simplifies changing the
value of multiple cells that shared the same original value. When cells are merged they also gain
an icon in the top-left of the cell that allows rows spanning the merged cell to be grouped.

Guided Template [t1]

Add row...

Imax_age amin_age Bor

= 25 = 20 AL
Ok
=ub prime
= 35 = 25 AL
Ok
sub prime
= 45 = 35 AL
Ok

oL L L L L L

=ub prime

Figure 16.16. Cell merging

16.3.3.2. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in
other columns spanning the collapsed rows that have different values are highlighted and the first
value displayed.

520

Authoring Assets

Guided Template [t1]

Add row...

_Smax_age amin_age BCr
g 2|5 25 EI 20 AA,
+ = ok
== B Sub prime
&= =g % g 3 AA
== B : : OK
== B Sub prime

Figure 16.17. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their
values updated.

16.3.4. Generated DRL

Whilst not necessary, rule authors can view the DRL that will be generated for a "Rule Template"
and associated data. This feature and its operation is no different to that for other assets. Select
the "Source" tab from the bottom of the editor screen. The DRL for all rules will be displayed.

521

Authoring Assets

Guided Template [t1]

.J_. |package org.mortgages:;

2. |

3. Jrule "t1_8"

4. | dialect "mvel”

5. | when

6| Applicant(age < 45, age >= 35, creditRating == "Sub prime")
7.] then

8. jend

9. |

10.jrule "t1_7"

11.| dialect "mvel"

12| when

13.] Applicant(age < 45 , age >= 35, creditRating == "OK")
|14.| then

15.jend

16.]

17.jrule "t1_g"

18.| dialect "mvel"

19.] when

20, Applicant(age < 45, age >= 35, creditRating == "AA")
21.| then

22, jend

23|

. 1 Y ——

Edit Source

..................................

Data Config

Figure 16.18. Generated DRL

Metadata

522

Authoring Assets

16.4. Guided decision tables (web based)

The guided decision table feature allows decision tables to be edited in place on the

web. This

works similar to the guided editor by introspecting what facts and fields are available to guide the
creation of a decision table. Rule attributes, meta-data, conditions and actions can be defined in a
tabular format thus facilitating rapid entry of large sets of related rules. Web-based decision table

rules are compiled into DRL like all other rule assets.

16.4.1. Types of decision table

There are broadly two different types of decision table, both of which are supported in Drools

Workbench:-

« Extended Entry

 Limited Entry

16.4.1.1. Extended Entry

An Extended Entry decision table is one for which the column definitions, or stubs, specify Pattern,
Field and operator but not value. The values, or states, are themselves held in the body of the

decision table. It is normal, but not essential, for the range of possible values to be re

stricted by

limiting entry to values from a list. Drools Workbench supports use of Java enumerations, Drools

Workbench enumerations or decision table "optional value lists" to restrict value entry.

Decision tahle

Apge hMake
mn | ¥ Descriplon Applicant [Sa] wiehicke [Sy] Premium
HiH =
age [<] make [==
w2 1 35 BMW 1000
g & 2 35 Audi 1000

Figure 16.19. Extended Entry Decision table

16.4.1.2. Limited Entry

A Limited Entry decision table is one for which the column definitions specify value in

addition to

Pattern, Field and operator. The decision table states, held in the body of the table, are boolean
where a positive value (a checked tick-box) has the effect of meaning the column should apply,

or be matched. A negative value (a cleared tick-box) means the column does not appl

Y.

523

Authoring Assets

Decision table

Age =35 BN Audi
HE # Description m Premium 100
age [<35] meke [==BMW] méeke [==Audi
= 8|1 V] V] /] O
% 8|2 O (] /] O
4 m| 3 & O &)
g m| 4 O O & O]
% 8|5 &] O O
% 8|6 O (v O O
= 8|7 V] | O O
5 2| 8 O O O O

Figure 16.20. Limited Entry Decision table

16.4.2. Main components\concepts

The guided decision table is split into two main sections:-

» The upper section allows table columns to be defined representing rule attributes, meta-data,
conditions and actions.

« The lower section contains the actual table itself; where individual rows define separate rules.

e Desupm T e ae g
Ei%_____, eeee——
gl 1 1 Bil 30 12345
a2 2 Ben <otherwise> 12345

G Ed 3 Weed 0 12345
% o4 -“-"_"‘"-—---.._.____a}__ <otherwise> 50 12345

Figure 16.21. Main components

524

Authoring Assets

16.4.2.1. Navigation

Cells can be selected in a variety of ways:-

« Firstly individual cells can be double-clicked and a pop-up editor corresponding to the underlying
data-type will appear. Groups of cells in the same column can be selected by either clicking
in the first and dragging the mouse pointer or clicking in the first and clicking the extent of the
required range with the shift key pressed.

« Secondly the keyboard cursor keys can be used to navigate around the table. Pressing the
enter key will pop-up the corresponding editor. Ranges can be selected by pressing the shift
key whilst extending the range with the cursor keys.

Columns can be resized by hovering over the corresponding divider in the table header. The
mouse cursor will change and then the column width dragged either narrower or wider.

16.4.2.2. Cell merging

The icon in the top left of the decision table toggles cell merging on and off. When cells are
merged those in the same column with identical values are merged into a single cell. This simplifies
changing the value of multiple cells that shared the same original value. When cells are merged
they also gain an icon in the top-left of the cell that allows rows spanning the merged cell to be
grouped.

Ciescription salience Litls e age
BH .
g =1 1 Bill 30 = 12345
g =2 2 = Ben <ptherwise>
gr B2 3 3
g m| 4 4
gr B| 5 b
g =6 6 Weed 40 H 12345
g |7 7 <otherwise> 50

Figure 16.22. Cell merging

16.4.2.3. Cell grouping

Cells that have been merged can be further collapsed into a single row. Clicking the [+\-] icon in
the top left of a merged cell collapses the corresponding rows into a single entry. Cells in other
columns spanning the collapsed rows that have identical values are shown unchanged. Cells in

525

Authoring Assets

other columns spanning the collapsed rows that have different values are highlighted and the first

value displayed.

EEH # Description salience name afe age
gr B2 1 1 Bill 30 12345
g o [2 Ben <otherwise> 12345
g a6 6 Weed 40 = 12345
gr B 7 7 <ptherwise> 50

Figure 16.23. Cell grouping

When the value of a grouped cell is altered all cells that have been collapsed also have their

values updated.

16.4.2.4. Operation of "otherwise"

Condition columns defined with literal values that use either the equality (==) or inequality (!=)
operators can take advantage of a special decision table cell value of "otherwise". This special
value allows a rule to be defined that matches on all values not explicitly defined in all other rules

defined in the table. This is best illustrated with an example:-

when
Cheese(name not in ("Cheddar", "Edan, "Brie"))

t hen

end

when
Cheese(nane in ("Cheddar", "Edani, "Brie"))

t hen

end

16.4.2.5. Re-arranging columns

Whole patterns and individual conditions can be re-arranged by dragging and dropping them in
the configuration section of the screen. This allows constraints to be re-ordered to maximise per-
formance of the resulting rules, by placing generalised constraints before more specific. Action

columns can also be re-arranged by dragging and dropping them.

526

Authoring Assets

— Condition columns

B el |

income : IncomeSource
8 income

=7 Mew column

Figure 16.24. Re-arranging Condition patterns

application : LoanApplication
= ﬁ'amnunt min

e Z/amadtint max
8 Adeposit max

Figure 16.25. Re-arranging columns
16.4.3. Defining a web based decision table

16.4.3.1. Manual creation

When a new empty decision table has been created you need to define columns for Facts, their
constraints and corresponding actions.

16.4.3.1.1. Column configuration

Expand the "Decision table" element and you will see three further sections for "Conditions", "Ac-
tions" and "Options". Expanding either the "Conditions" or "Actions" sections reveals the "New
column” icon. This can be used to add new column definitions to the corresponding section. Ex-
isting columns can be removed by clicking the "-" icon beside each column name, or edited by
clicking the "pencil" icon also beside each column name. The "Options" section functions slightly
differently however the principle is the same: clicking the "Add Attribute/Metadata” icon allows
columns for table attributes to be defined (such as "salience", "no-loop" etc) or metadata added.

527

Authoring Assets

[=] Decision table

=F New column

[=I Condition columns

LoanApplication [application]

B /amount min
B ;/amount max

B #period
B deposit max

IncomeSource [income]
B Fincome

=l Action columns

B ;7Loan approved
8 LM
B Arate

I=| (options)
Attributes:

Benabled Default value: [J Hide column:

Figure 16.26. Column configuration

16.4.3.1.1.1. Utility columns

All decision table contain two utility columns containing rule number and rule description.
16.4.3.1.1.2. Adding columns

To add a column click on the "New column™ icon.

You are presented with the following column type selection popup.

528

Authoring Assets

Add a new column b4
Add a new Metadata\l&Attribute column N

Add a simple Condition

Add a Condition BRL fragment

Set the value of a field

Set the value of a field on a new fact

Retract an existing fact

Execute a Work Item

Set the value of a field with a Work Itermn parameter Ll

&4 Include advanced options

ok

Figure 16.27. Column type popup

Type of column:

By default the column type popup only shows the following simple types:-

Add a new Metadata\Attribute column

* Add a simple Condition

Set the value of a field

Set the value of a field on a new fact
* Delete an existing fact

Clicking on "Include advanced options" adds the following additional "advanced" column types for
more advanced use cases:-

Add a Condition BRL fragment
» Execute a Work Item

 Set the value of a field with a Work Item parameter

Set the value of a field on a new Fact with a Work Item parameter

Add an Action BRL fragment
16.4.3.1.1.3. Simple column types
16.4.3.1.1.3.1. Metadata

Zero or more meta-data columns can be defined, each represents the normal meta-data annota-
tion on DRL rules.

529

Authoring Assets

16.4.3.1.1.3.2. Attributes

Zero or more attribute columns representing any of the DRL rule attributes (e.g. salience, timer,
enabled etc) can be added. An additional pseudo attribute is provide in the guided decision table
editor to "negate" a rule. Use of this attribute allows complete rules to be negated. For example
the following simple rule can be negated as also shown.

when
$c : Cheese(nanme == "Cheddar")
t hen

end

when
not Cheese(nanme == "Cheddar")
t hen

end

16.4.3.1.1.3.3. Simple Condition

Conditions represent constraints on Fact Patterns defined in the left-hand side, or "when" portion,
of a rule. To define a condition column you must first select or define a Fact Pattern bound to
a model class. You can choose to negate the pattern. Once this has been completed you can
define field constraints. If two or more columns are defined using the same fact pattern binding the
field constraints become composite field constraints on the same pattern. If you define multiple
bindings for a single model class each binding becomes a separate model class in the left-hand
side of the rule.

When you edit or create a new column, you will be given a choice of the type of constraint:-

« Literal : The value in the cell will be compared with the field using the operator.
« Formula: The expression in the cell will be evaluated and then compared with the field.

» Predicate : No field is needed, the expression will be evaluated to true or false.

530

Authoring Assets

Condition column configuration x
Pattern: LoanApplication [application] &7

Calculation type: @ Literal value O Formula O Predicate
Field: amount @®7
Operator: greater than &
From Entry Point:
Column header (description): amounkt min
(optional) value list:)
Default value:
Binding:
Hide column: []

Apply changes

Figure 16.28. Simple Condition popup
16.4.3.1.1.3.4. Set the value of a field

An Action to set the value of a field on previously bound fact. You have the option to notify the
Rule Engine of the modified values which could lead to other rules being re-activated.

Column configuration (set a field on a fact)

Fact application &7

Field: approved &
Column header (description): Loan approved

(optional) value list: true, false @

Defaultvalue:; Choose. . |

Update engine with changes: [] @
Hide column: [

Apply changes |

Figure 16.29. Set the value of a field popup

531

Authoring Assets

16.4.3.1.1.3.5. Set the value of a field on a new fact

An Action to insert a new Fact into the Rule Engine Working Memory and set the a value of one of
the new Facts' fields. You can choose to have the new Fact "logically inserted" meaning it will be
automatically deleted should the conditions leading to the action being invoked cease to be true.
Please refer to the Drools Expert documentation for details on Truth Maintenance and Logical
insertions.

Action column configuration (inserting a new fact) 4
Pattern: LoanApplication [§la] o#
Field: approved &

Column header (description): Approve application
(optional) value list: @
Defaultvalue: Choose. . ~|
Logically insert: (] (@
Hide column: [

Apply changes |

Figure 16.30. Set the value of a field on a new fact popup
16.4.3.1.1.3.6. Delete an existing fact

An Action to delete a bound Fact.

Column configuration (retract a fact) x
Column header (description): Remove application
Hide column: [

Apply changes

Figure 16.31. Delete an existing fact popup
16.4.3.1.1.4. Advanced column types
16.4.3.1.1.4.1. Condition BRL fragments

A construct that allows a BRL fragment to be used in the left-hand side of a rule. A BRL fragment
is authored using the Guided Rule Editor and hence all features available in that editor can be
used to define a decision table column; such as "from", "collect” and "accumulate” etc. When using

532

Authoring Assets

the embedded Guided Rule Editor field values defined as "Template Keys" will form columns in

the decision table. Facts and Fact's fields bound in the BRL fragment can be referenced by the
simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear
in the decision table.

Condition column configuration (ERL fragment) x®
Column header (description): Complex
Hide column: []
WHEN s
There is an Applicant [$a] with: 2
L greater than =|sages 5,8 gL
creditRating equal to d LU -
There is a LoanApplication with: =
3 deposit greater than ~|10000m =, 8 F0o5
lengthYears equal to ;|$IengmlnYears=l Ng B
Apply changes
Figure 16.32. Defining a Condition with BRL
w deposit max INCome Complex Loan approved LMI
nj IncomeSource Sage SlengthinYears application application
s [=] deposit [<] type [=] age lengthYears approved insuranceCost
20000 Asset 30 10 true 0
2000 Job 30 20 true 0
3000 Job 30 a0 true 10

/

Figure 16.33. The resulting decision table

16.4.3.1.1.4.2. Execute a Work Item

An Action invoking a jJBPM Work Item Handler setting its input parameters to bound Facts\Facts

fields values.

533

Authoring Assets

16.4.3.1.1.4.3. Set the value of a field with a Work Item parameter
An Action setting the value of a Fact's field to that of a JBPM Work Item Handler's result parameter.
16.4.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter

An Action setting the value of a new Fact's field to that of a]JBPM Work Item Handler's result
parameter.

16.4.3.1.1.4.5. Action BRL fragment

A construct that allows a BRL fragment to be used in the right-hand side of a rule. A BRL fragment
is authored using the Guided Rule Editor and hence all features available in that editor can be
used to define a decision table column. When using the embedded Guided Rule Editor field val-
ues defined as "Template Keys" will form columns in the decision table. Facts bound in the BRL
fragment can be referenced by the simpler column types and vice-versa.

In the following example two Template Keys have been defined and hence two columns appear
in the decision table.

Action column configuration (BRL fragment) ®
Column header (description):

Hide column:]

THEN ar

Setvalue of LoanApplication [application] amount $amount &

L ° I

Set value of LoanApplication [application] explanation Sexplanation a a

Apply changes

Figure 16.34. Defining an Action with BRL

proved LMI rate Compilex action pprove application ;| Remove application
ation application application Samount Sexplanation LpanApplication [Sla]

wed insuranceCost approvedRate ArTHLnt explanation approved [Retract]

g 0 2] application

e 0 4 O

e 10 [O

o /

Figure 16.35. The resulting decision table

534

Authoring Assets

16.4.3.2. Using a Wizard

A Wizard can also be used to assist with defining the decision table columns.

The wizard can be chosen when first electing to create a new rule. The wizard provides a number
of pages to define the table:-

e Summary

* Add Fact Patterns

* Add Constraints

* Add Actions to update facts

» Add Actions to insert facts

e Columns to expand

16.4.3.2.1. Selecting the wizard

The "New Wizard" dialog shows a "Use wizard" checkbox.

Create new Guided Decision Table

* Fesource Mame

Location default://master@uf-

playground/mortgages/src/main/resources/org/mortgages

llse Wizard

* Extended entry, values defined in table body

Limited entry, values defined in columns

o Ok Cancel

Figure 16.36. Selecting the wizard

535

Authoring Assets

16.4.3.2.2. Summary page

The summary page shows a few basic details about the decision table and allows the asset name
to be changed.

Guided Decision Table Wizard

© Summary Summary of fields for the decision table.
/' Add Fact Patterns
*

/" Add Constraints Name: example

/' Add Actions to update Facts Initial description:

Create in Package: cep

&
&
&
&
% Add Actions to insert Facts
&

/' Columns to expand

<- Previous | Mext -> | Cancel | Finish |

Figure 16.37. Summary page

16.4.3.2.3. Add Fact Patterns page

This page allows Fact types to be defined that will form the "When" columns of the rules. Fact
types that are available in your model will be shown in the left-hand listbox. Select a Fact type
and use the ">>" button to add it to your list of chosen facts on the right-hand listbox. Removal
is a similar process: the Fact that is no longer required can be selected in the right-hand listbox
and the "<<" button used to remove it. All Fact types need to be bound to a variable. Incomplete
Fact types will be highlighted and a warning message displayed. You will be unable to finish your
definition until all warnings have been resolved.

536

Authoring Assets

Guided Decision Table Wizard ®
v Summary Define Facts\Patterns on which constraints can be defined.
+/ Add Fact Patterns
+/ Add Constraints Available patterns Chosen patterns
+/ Add Actions to update Facts ArrayList tc : TelephoneCall
Cheese
+/ Add Actions to insert Facts
Collection

+ Columns to expand

List =
TelephoneCall <<

Binding: tc
From Entry Point:

Over sliding window: — None — ~|

<- Previous | Mext -> | Cancel | Finish |

Figure 16.38. Add Fact Patterns page

Guided Decision Table Wizard ®
S _
[Add Fact PHHTS 1

%/ Add Constraints Define Facts\Patterns on which constraints can be defined.

+/ Add Actions to ipdate Facts

+/ Add Actions to |nsert Facts CXEET I [Chosen patterns
+ Columns to exphnd ArrayList TelephoneCall
Cheese
Collection

List =
TelephoneCall <<

The page has errors and
therefore marked as incomple
The wizard cannot be finishe

B R

From Entry Point:

Over sliding window: — None — ~|

<- Previous | Mext -> | Cancel |

Figure 16.39. Example of an incomplete Fact definition

537

Authoring Assets

16.4.3.2.4. Add Constraints page

This page allows field constraints on the Fact types you have chosen to use in the decision table
to be defined. Fact types chosen on the previous Wizard page are listed in the right-hand listbox.
Selecting a Fact type by clicking on it will result in a list of available fields being shown in the middle
listbox together with an option to create a predicate that do not require a specific field. Fields can
be added to the pattern's constraints by clicking on the field and then the ">>" button. Fields can
be removed from the pattern definition by clicking on the Condition in the right-hand listbox and
then the "<<" button. All fields need to have a column header and operator. Incomplete fields will
be highlighted and a warning message displayed. You will be unable to finish your definition until
all warnings have been resolved.

Guided Decision Table Wizard

% Summary
of
W
o
W

s
W

Add Constraints

% Add Actions to insert Facts

/ Columns to expand

Define constraints on the Facts\Patterns fields.

Add Fact Patterns

Available patterns Available fields Conditions

Add Actions to update Facts tc : TelephoneCall this [Date of call] dateOfCall

duration : Whole number (intege
caller : Text

callee : Text

telephoneMumber : Text
dateOfCall : Date

[New Predicate]

ﬂ
ﬂ

— e
Calculation type: @ Literal value O Formula
Column header (description): Date of call
Operator: after =G |
(optional) value list: @

Default value:

<- Previous | Mext -> | Cancel | Finish |

Figure 16.40. Add Constraints page

16.4.3.2.5. Add Actions to update facts page

Fact types that have been defined can be updated in the consequence, or action, part of a rule.
This page allows such actions to be defined. Fact types added to the decision table definition are
listed in the left-hand listbox. Selecting a Fact type by clicking on it will result in a list of available
fields being shown in the middle listbox. Fields that need to be updated by the rule can be added
by selecting an available field and pressing the ">>" button. Fields can be removed similarly by
clicking on a chosen field and then the "<<" button. All actions require a column header. Any
incomplete actions will be highlighted and a warning message displayed. You will be unable to
finish your definition until all warnings have been resolved.

538

Authoring Assets

Guided Decision Table Wizard

7 Summary

/' Add Fact Patterns

" Add Constraints

Add Actions to update Facts

/' Add Actions to insert Facts

e & & & & &

/' Columns to expand

Define actions to set the fields on bound Facts\Patterns.

Available patterns

tc : TelephoneCall

Column header (description): Who called

(optional) value list:

Default value:

O Update engine with changes: @

<- Previous | Mext -> | Cancel | Finish |

Available fields

this

duration : Whole number (intege
caller : Text

callee : Text

telephoneMumber : Text
dateOfCall : Date

[————

6]

Figure 16.41. Add Actions to update facts page

16.4.3.2.6. Add Actions to insert facts page

Actions can also be defined to insert new Facts into the Rule Engine. A list of Fact types available
in your model are listed in the left-hand listbox. Select those you wish to include in your decision
table definition by clicking on them and pressing the ">>" button between the left most listbox
and that titled "Chosen patterns". Removal is a similar process whereby a chosen pattern can be
selected and removed by pressing the "<<" button. Selection of a chosen pattern presents the
user with a list of available fields. Fields that need to have values set by the action can be added
by selecting them and pressing the ">>" button between the "Available fields" and "Chosen fields"
listbox. Removal is a similar process as already described. New Facts need to be bound to a
variable and have a column heading specified. Incomplete Facts and\or fields will be highlighted
and a warning message displayed. You will be unable to finish your definition until all warnings

have been resolved.

ﬂ
ﬂ

Chosen fields

[Who called] caller

539

Authoring Assets

Guided Decision Table Wizard

Summary

/' Add Fact Patterns

/' Add Constraints

/' Add Actions to update Facts
/' Add Actions to insert Facts

/' Columns to expand

Define actions to insert new Facts\Patterns.

Available patterns Chosen patterns
ArrayList c : Cheese
Cheese

Collection

List =
TelephoneCall <<

*

Binding: ¢

[

Available fields Chosen fields
this [Cheese] f1
fl: Text
f2: Text

f3: Text =

O Logically assert a fact - the fact will be retracted when the supporting evidence is removed. @

Column header (description): Cheese
(optional) value list: @

Default value:

<- Previous | Mext -> | Cancel | Finish |

Figure 16.42. Add Actions to insert facts page

16.4.3.2.7. Columns to expand page

*

This page controls how the decision table, based upon Conditions defined on the prior pages,
will be created. Condition columns defined with an optional list of permitted values can be used
to create rows in the decision table. Where a number of Condition columns have been defined
with lists of permitted values the resulting table will contain a row for every combination of values;
i.e. the decision table will be in expanded form. By default all Condition columns defined with
value lists will be included in the expansion however you are able to select a sub-set of columns
if so required. This can be accomplished by unticking the "Fully expand" checkbox and adding
columns to the right-hand listbox. If no expansion is required untick the "Fully expand" checkbox

and ensure zero columns are added to the right-hand listbox.

540

Authoring Assets

Guided Decision Table Wizard
+/ Summary
+/ Add Fact Patterns

% Add Constraints

Define the columns from which the generated table will be expanded.

O Fully expand the table, including all columns.

«/ Add Actions to update Facts Available columns Chosen columns
+/ Add Actions to insert Facts [Who called] caller
«/ Columns to expand

<- Previous | Next -> | Cancel | Finish |

Figure 16.43. Columns to expand page

Guided Decision Table Wizard
+/ Summary

+/ Add Fact Patterns

%+ Add Constraints

+/ Add Actions to update Facts
+/ Add Actions to insert Facts

%/ Columns to expand

Define constraints on the Facts\Patterns fields.

Available patterns Available fields Conditions

tc : TelephoneCall this [Date of call] dateOfCall
duration : Whole number (intege [Who called] caller
caller : Text

Calculation type:

callee : Text ﬂ Jﬁ
telephoneMumber : Text <<

dateOfCall : Date

[New Predicate]

© Literal value O Formula

Column header (description): Who called *

Operator: equal to d

(optional) value li

Default value:

<- Previous | Mext -> | Cancel | Finish |

. |Rod,Jane,Freddie €y,

Figure 16.44. Example of a Condition column with optional values defined

541

Authoring Assets

=| Decision table

= Condition columns

8 ;/Date of call
8 #Who called

=7 MNew column

Action columns

(options)
. Dateofcal @ Whocaled |
i # Description TelephoneCall [t
dateCfCall [== caller [==
+ =(1 Rod
CE - | Jane
g B3 . Freddie

Figure 16.45. Example of adecision table generated with expanded columns

16.4.4. Rule definition

This section allows individual rules to be defined using the columns defined earlier.

Rows can be appended to the end of the table by selecting the "Add Row" button. Rows can also
be inserted by clicking the "+" icon beside an existing row. The "-" icon can be used to delete rows.

542

Authoring Assets

] min-age max-age palicy type make model Premium
HTH # Description Applicant [Sa] Policy [Sp] Wehicle [$v] 3p
age [==] age [<] type [—=] make [=] model [—=] premium
g B2 1 18 25 TPFT BMW 318i 1000
g B2 2 18 25 COMP BMW 318i 1500
g B2 3 18 25 TPFT BMW M3 2000
g B 4 18 25 COMP BMW M3 2500
g B[5 18 25 TPFT Audi Ad 1500
g 2| 6 18 25 COMP Audi A4 2000
g BT 18 25 TPFT Audi RE8 2500
g B2 8 18 25 COMP Audi RE8 3000

Add row... | Otherwise ‘ Analyze... ‘ Audit log |

Figure 16.46. Rule definition

16.4.5. Audit Log

An audit log has been added to the web-guided Decision Table editor to track additions, deletions
and modifications.

By default the audit log is not configured to record any events, however, users can easily select
the events in which they are interested.

The audit log is persisted whenever the asset is checked in.

543

Authoring Assets

Audit log

Events being logged.:
"~ Column deleted.[] Column updated | Row inserted. [| Row deleted. [Column inserted.

Mo entries.

1-10f0 M4 W M W

© Ok

Figure 16.47. An empty audit log

Once the capture of events has been enabled all susbsequent operations are recorded. Users
are able to perform the following:-

» Record an explanatory note beside each event.

« Delete an event from the log. Event details remain in the underlying repository.

544

Authoring Assets

Audit log

Events being logged:
~] Column deleted.® Column updated”] Row inserted. [Row deleted. [Column inserted.

Column updated.
On 04-Nov-2013 11:45:28 by admin.
Updated Condition column ‘deposit’
Columns Updated

+ Field name: Default value:

e Old value:

Mew Value:

Field name: Header

Old value: amount min
MNew Value: deposit

Field name: Field:

Old value: amount
MNew Value: deposit

1-1of1 W4 KW H W

© 0ok

Figure 16.48. Example of audit events

16.4.6. Real Time Validation and Verification

Decision tables are validated after each cell change. If any issues are found the results will be
shown in the column on the right side of the table. Validation and verification covers the following
issues:

16.4.6.1. Redundancy

Redundancy exists between two rows when both rows execute the same actions when given the
same set of facts.

Redundancy might not be a problem if the redundant rules are setting a value on an existing fact,
this just sets the value twice. Problems occur when the two rules increase a counter or add more
facts into the working memory, since this causes unwanted side effects. In both cases the other
row is not needed.

545

Authoring Assets

16.4.6.2. Subsumption

Subsumption exists when one row executes the same action as another row when given the same
set of facts. The rows are not redundant since the another row is more complicated and it can fire
with a set of facts that do not fire the subsumptant row.

The problems with subsumption are similar to the case with redundancy.

16.4.6.3. Conflicts

Conflicts can exist either on a single row or between rows.
A single row conflict prevents the row actions from ever being executed.

Conflict between two rows exists when the conditions of two rules are met with a same set of
facts, but the actions set fact fields to different values. The conditions can be redundant or just
subsumptant. Conflicts are a problem because it is impossible to know what action is made last.
Conditions might set a loan to both approbed and rejected. The end result may be different on
each time the rules are ran and with each rule engine software version.

16.4.6.4. Missing Columns

In some cases, usually by accident, the user can delete all the condition or action columns. When
the conditions are removed all the actions are executed and when the actions columns are missing
the rows do nothing.

16.5. Guided Decision Trees

The Workbench supports authoring of simple Decision Trees.

@ Note
The editor does not support nested Data Objects at present. It is therefore advised
to only use Guided Decision Trees with flat Data Object models.

16.5.1. The initial editor layout

When a new Guided Decision Tree is created the editor is initially blank.
The left-hand side is a palette of available Data Objects, their fields and Actions.

The right-hand side is the area where you can drag and drop Data Objects, their fields or Actions
to build a tree.

The editor will show a connector between the node being dragged and applicable children to which
it can be attached. When the drag is complete the new node will be attached to the applicable child.

546

Authoring Assets

Root nodes will not have a connector shown when being dragged to an empty tree. Completing
the drag positions the root node in the centre of the editor.

There are various restrictions when composing a tree:-

1. A tree must have a Data Object at the root.

2. A tree can only have one root.

3. Data Objects can have either other Data Objects, field constraints or Actions as children.
The field constraints must be on fields of the same Data Object as the parent node.

4. Field constraints can have either other field constraints or Actions as children.
The field constraints must be on fields of the same Data Object as the parent node.

5. Actions can only have other Actions as children.

dtl.tdrl - Guided Decision Trees Save | Delete | Rename || Copy | Validate | LatestVerson™ & | x
Applicant

Bankrupicy

ncomeSource

LoanApplication

Actions

Editor Overview Source Config

Figure 16.49. Guided Decision Trees - Empty editor

Expanding the palette reveals Tree Nodes for the Data Object and its fields.

547

Authoring Assets

dtl.tdrl - Guided Decision Trees Sawe || Delete | Rename | Copy | Validate || LatestVersion™ | %

Applicant

. Applicant
@

. applicationDate
. approved A T T N
. creditRating &
. name

Fankruprey Drag a node from the palette on the left to begin authoring.

IncomeSource

LoanApplication

Actions

Editor | Overview Source Config

Figure 16.50. Guided Decision Trees - Expanded palette

16.5.2. First steps
Drag a Data Object on to the tree authoring area.

dtl.tdrl - Guided Decision Trees Save Delete Rename @ Copy Validate Latest Version ™ x

Applicant

. Applicant
. age

. applicationDate
. approved

. creditRating
. name

Bankruptcy

IncomeSource
LoanApplication

Actions

Editor Overview Source Config

Figure 16.51. Guided Decision Trees - Data Object root node

Clicking on a node selects it.

548

Authoring Assets

Icons to manipulate the node appear when the node is selected.

The icons are:

1. Delete
Deleting a node will also delete all children.
2. Edit
Collapsed nodes cannot be edited as they contain numerous children.

3. Collapse

AR X

Applicant

I‘-F?

Figure 16.52. Guided Decision Trees - Selected node

16.5.3. Editing Data Object nodes
Selecting a Data Object node and clicking the edit icon shows a popup to manage the node.

The popup shows the Data Object type and allows it to be bound to a variable. Bound Data Objects
can be modified or retracted by Actions.

549

Authoring Assets

Edit Type

Class Name:

Binding:

Binding

Patterns and Fields that need to
be referenced in either other
Patterns or Actions need to be
given an identifier

oo [

Figure 16.53. Guided Decision Trees - Data Object Editor

16.5.4. Editing Field Constraint nodes

Selecting a Field Constraint node and clicking the edit icon shows a popup to manage the node.

The popup shows the Data Object type and field and allows the field to be bound to a variable.
An operator, applicable to the Data Model field's data-type, can be selected and a corresponding

value entered.

550

Authoring Assets

Edit Constraint

Class Name:
Field Name:
-
Binding
Binding:
| Patterns and Fields that need to
% - be referenced in either other
Patterns or Actions need to be
Operator. given an identifier
equal to v
Value:
AA L J

O Ok Cancel

Figure 16.54. Guided Decision Trees - Field Constraint Editor

16.5.5. Editing Action nodes

Selecting an Insert Action node and clicking the edit icon shows a popup to manage the node.

The popup allows selection of the Data Object to be inserted and whether it's insertion is "logical".
Please refer to Drools documentation regarding Truth Maintenance for more information. Fields
for the new Data Object can have values set.

551

Authoring Assets

Edit Insert

Insert:

Applicant v
Logically insert the object @

Field values:

age * 0 @ Remove

© Add

(oo R

Figure 16.55. Guided Decision Trees - Action "Insert" Editor
Selecting an Insert Retract node and clicking the edit icon shows a popup to manage the node.

The popup allows any Data Object bound in the path from the selected node to the root node to
be selected for retraction.

552

Authoring Assets

Edit Retract

Refract:

2a v

oo [

Figure 16.56. Guided Decision Trees - Action "Retract" Editor
Selecting an Insert Update node and clicking the edit icon shows a popup to manage the node.

The popup allows any Data Object bound in the path from the selected node to the root node to
be modified. Fields for the modified Data Object can have values set.

553

Authoring Assets

Edit Update

Update:
$a v

Update engine with changes @

Field values:

approved v | false v @ Remove

© Add

(oo R

Figure 16.57. Guided Decision Trees - Action "Update" Editor

16.5.6. Managing the tree

Even simple trees can grow in size and become difficult to maintain.

It is therefore possible to collapse parts of the tree, giving more space in the user interface to
maintain different parts of the tree.

If a node has children, when selected, it will have an icon to collapse the children. Clicking this
icon will collapse children.

A collapsed node can equally be expanded by selecting it and clicking on the exapnd icon. A
collapsed node cannot be edited as it contains numerous children. Deleting a collapsed node
deletes all children too.

554

Authoring Assets

.: G-Jan-2015"

applicationD

Figure 16.58. Guided Decision Trees - Collapsing nodes

555

Authoring Assets

A
%a 1 Applicant

creditRating == " ﬁ.-ftl:

Figure 16.59. Guided Decision Trees - Collapsed node

16.6. Spreadsheet decision tables

Multiple rules can be stored in a spreadsheet. Each row in the spreadsheet is a rule, and each
column is either a condition, an action, or an option. The Drools Expert section of this document
discusses spreadsheet decision tables in more detail.

556

Authoring Assets

Create new Decision Table (Spreadsheet)

*Resource Name [|]

Location default://master@uf-

playground/mortgages/src/main/resources/org/mortgages

| Choose File .H':' file chosen

Cancel

Figure 16.60. Spreadsheet decision table

To use a spreadsheet, you upload an XLS file. To create a new decision table: launch the new
"Decision Table (Spreadsheet)" wizard, you will get an option to upload one.

16.7. Scorecards

A scorecard is a graphical representation of a formula used to calculate an overall score. A score-
card can be used to predict the likelihood or probability of a certain outcome. Drools now supports
additive scorecards. An additive scorecard calculates an overall score by adding all partial scores
assigned to individual rule conditions.

Additionally, Drools Scorecards will allows for reason codes to be set, which help in identifying
the specific rules (buckets) that have contributed to the overall score. Drools Scorecards will be
based on the PMML 4.1 Standard.

The New Iltem menu now allows for creation of scorecard assets.

557

Authoring Assets

—| Scorecard (sc-wge-5)

—I Setup Parameters

Facts Resultant Score Field Initial Score

CustcmerE customerScore : double IZ| 20 @
Use Reason Codes Resultant Reason Codes Field Reason Codes Algorithm Baseline Score

false none E 0.0

—| Characteristics

Mew Characteristic

Name CustAgeScore Remave Characteristic Add Attribute

Fact Characteristic Baseline Score Reason Code
Customer customerAge - int

Operator Value Partial Score Reason Code Actions
= E 0 10 Remove
»=< [x] 140 20 Remave
>=.< [r] 40,60 25 Remave
== E 60 30 Remave

Figure 16.61. Scorecard Asset - Guided Editor

The above image shows a scorecard with one characteristic. Each scorecard consists of two
sections (a) Setup Parameters (b) Characteristic Section

16.7.1. (a) Setup Parameters

The setup section consits of parameters that define the overall behaviour of this scorecard.

1. Facts: This dropdown shows a list of facts that are visible for this asset.

2. Resultant Score Field: Shows a list of fields from the selected fact. Only fields of type 'double’
are shown. If this dropdown is empty double check your fact model. The final calculated score
will be stored in this field.

3. Initial Score: Numeric Text Field to capture the initial score. The generated rules will initialize
the 'Resultant Score Field' with this score and then is added to the overall score whenever
partial scores are summed up.

4. Use Reason Codes: Boolean indicator to compute reason codes along with the final score.
Selecting Yes/No in this field will enable/disable the 'Resultant Reason Codes Field', 'Reason
Code Algorithm' and the 'Baseline Score' field.

5. Resultant Reason Codes Field: Shows a list of fields from the selected fact. Only fields of type
‘java.util.List' are shown. This collection will hold the reason codes selected by this scorecard.

6. Reason Code Algorithm: May be "none", "pointsAbove" or "pointsBelow", describing how rea-
son codes shall be ranked, relative to the baseline score of each Characteristic, or as set at
the top-level scorecard.

558

Authoring Assets

7. Baseline Score: A single value to use as the baseline comparison score for all characteristics,
when determining reason code ranking. Alternatively, unique baseline scores may be set for
each individual Characteristic as shown below. This value is required only when UseReason-
Codes is "true" and baselineScore is not given for each Characteristic.

E] Note
If UseReasonCodes is "true”, then BaselineScore must be defined at the Score-
card level or for each Characteristic, and ReasonCode must be provided for each
Characteristic or for each of its input Attributes. If UseReasonCodes is "false", then
baselineScore and reasonCode are not required.

16.7.2. (b) Characteristics

On Clicking the 'New Characteristic' button, a new empty characteristic editor is added to the
scorecard. Defines the point allocation strategy for each scorecard characteristic (numeric or cat-
egorical). Each scorecard characteristic is assigned a single partial score which is used to com-
pute the overall score. The overall score is simply the sum of all partial scores. Partial scores are
assumed to be continuous values of type "double".

16.7.2.1. Creating Characterstics

Every scorecard must have at least one characteristic

Name Remove Characteristic | Add Attribute |

Fact Characteristic Baseline Score Reason Code

Figure 16.62. New Characteristic

1. Name: Descriptive name for this characteristic. For informational reasons only.

2. Remove Charteristic: Will remove this characteristic from the scorecard after a confirmation
dialog is shown.

3. Add Attribute: Will add a line entry for an attribute (bin).

4. Fact: Select the class which will be evaluated for calculating the partial score.

5. Characteristic: Shows the list of fields from the selected Fact. Only fields of type "String", "int",
"double", "boolean” are shown.

559

Authoring Assets

6. Baseline Score: Sets the characteristic's baseline score against which to compare the actu-
al partial score when determining the ranking of reason codes. This value is required when
useReasonCodes attribute is "true" and baselineScore is not defined in element Scorecard.
Whenever baselineScore is defined for a Characteristic, it takes precedence over the base-
lineScore value defined in element Scorecard.

7. Reason Code: Contains the characteristic's reason code, usually associated with an adverse
decision.

16.7.2.2. Creating Attributes

On Clicking the 'New Attribute' button, a new empty attribute editor. In scorecard models, all the
elements defining the Attributes for a particular Characteristic must all reference a single field.

Operator Value Partial Score Reason Code Actions

[=] X
Figure 16.63. New Attribute

1. Operator: The condition upon which the mapping between input attribute and partial score
takes place. The operator dropdown will show different values depending on the datatype of
the selected Field.

a. DataType Strings: "=", "in".

b. DataType Integers: "=", ">", "<" ">=" "<=" "> <" ">= <" ">z <= "> <=
c. DataType Boolean: "true", "false".

Refer to the next sub-section (values) for more details.

2. Value: Basis the operator selected the value specified can either be a single value or a set of
values separated by comma (","). The value field is disabled for operator type boolean.

Table 16.1. Operators / Values

Data Type Operator Value Remarks
String = Single Value will look for an exact
match
String in Comma Separated The operator 'in' indi-
Values (a,b,c,...) cates an evaluation to

TRUE if the field val-
ue is contained in the
comma separated list
of values

Boolean is true N/A Value Field is uned-
itable (readonly)

560

Authoring Assets

Data Type Operator Value Remarks
Boolean is false N/A Value Field is uned-
itable (readonly)
Numeric = Single Value Equals Operator
Numeric > Single Value Greator Than Opera-
tor
Numeric < Single Value Less Than Operator
Numeric >= Single Value Greater than or equal
To
Numeric <= Single Value Less than or equal To
Numeric >.< Comma Separated (Greater than Value
Values (a,b) 'a") and (less than val-
ue 'b")
Numeric >=..< Comma Separated (Greater than or
Values (a,b) equal to Value 'a)
and (less than value
lbl)
Numeric >=,.<= Comma Separated (Greater than or
Values (a,b) equal to Value 'a)
and (less than or
equal to value 'b")
Numeric >.<= Comma Separated (Greater than Value
Values (a,b) 'a") and (less than or
equal to value 'b")

3. Partial Score: Defines the score points awarded to the Attribute.

4. Reason Code: Defines the attribute's reason code. If the reasonCode attribute is used in this
level, it takes precedence over the ReasonCode associated with the Characteristic element.

5. Actions: Delete this attribute. Prompts the user for confirmation.

@ Note

If Use Reason Codes is "true", then Baseline Score must be defined at the Score-
card level or for each Characteristic, and Reason Code must be provided for each
Characteristic or for each of its input Attributes. If Use Reason Codes is "false”,
then BaselineScore and ReasonCode are not required.

16.8. Test Scenario

Test Scenarios are used to validate that rules and knowledge base work as expected. When the
knowledge base evolves, Test Scenarios guard against regression.

561

Authoring Assets

U berFire Explore ~ New - Project ~ Repository ~

Project Explorer @ & - Arethey old enough.scenario - Test Scenarios save | Deiete | Rename Copy Runscenario | Runallscenarios Lalest Version™ | % ¥ | A
demo = uf-playground = = mortgages - B Knowledge base defaultkieBase v Knowledge session defaultkieSession v
GIVEM
e . 5
B <default: Insert Applicant[a] a
& org 17
B mortgages age: o
=]
Insert LoanApplicationapplication] =)
amount; =]
Open Project Editor
=]
Insert IncomeSourceincomeSource]g
Add afield
CALL METHOD
j DRL ~ Ls
e Add input data and expectations here.
. EXPECT, B ous date and e
{7 oataomiects - = g U eal date and time v
. LoanApplication 'application’ has values: =)
= approved: equals v | false ra
j DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~
= I
Mare
E EHUMERATION DEE S TIDUE (configuration) All rules may fire v
qr_‘(glulzuals)
Eg GUIDED DECISION TABLES ~
Eg GUIDED RULES ~
Ea GUIDED RULES [WITHDSL) +
(ﬂ TEST SCENARIOS ~
Are they old enough
Go edit history only
MINJA:
Mo bankruptcies
Fricing low end
Editor Overview

Figure 16.64. Example Test Scenario

Given section lists the facts needed for the behaviour. Expect section lists the expected changes
and actions done by the behaviour. Given facts are passed for the Test Scenario before execu-
tion. During the rule execution, changes in the knowledge base are recorded. After the execution
ends the recorded actions, existing facts in the knowledge base and knowledge base output is
compared against the expectations.

562

Authoring Assets

Are they old enough.scenario - Test Scenarios Save Delete Rename Copy Funscenario Funal scenarios Latest Version ™ x

Audit log:
Knowledge base defaulikieBase v | Knowledge session | defaultkieSession v
l4}JGI'\:‘EI-J
Insert ‘Applicanta] =]
age: 17 g
=]
Insert LoanApplication'[application] =)
amount,| 1 =]
=]
Insert'IncomeSource[incomeSource]g
Add a field

& CALL METHOD
Add input data and expeciations here.

LEAPECT g &7 Use real date and time v
LoanApplication 'application' has values: 1=}

approved: equals v false Y=
Maore...

{configuration) All rules may fire v

,__:}_,(gloljals)

Editor Owerview

Reporting x

Success
1 test(s) ran in 0 minutes 0 seconds.
Text

Figure 16.65. Example Test Scenario after execution

16.8.1. Knowledge Session Selector

Knowledge base | defaultKieBase v | Knowledge session | defaultKieSession

Figure 16.66. Knowledge Session Selector

Knowledge session selector is used to select the session that the rules are ran against. The
knowledge session needs to be stateful and use the pseudo clock when simulated time is used.
Knowledge sessions are defined in the Project Editor, in the Knowledge bases and Sessions
section.

563

Authoring Assets

16.8.2. Given Section

Mew input x
e New input

Insert a new fact: Applicant jFact name: Add
Modify an existing fact: 2 j Add
Retract an existing fact: a j Add
Activate rule flow group Add

Figure 16.67. Given popup

* Insert a new fact - Adds a new fact that will be inserted into the knowledge base before exe-
cution.

» Modify an existing fact - Allows editing a fact between knowledge base executions.
» Delete an existing fact - Allows removing facts between executions.

 Activate rule flow group - Allows rules from a rule flow group to be tested, by activating the
group in advance.

16.8.3. Expect Section

New expectation o
0 New expectation
Rule: (show list) | OK |

Fact value: & j Add |
Any fact that matches: Applicant j Add |

SR M EE O ELEL A -

Figure 16.68. Expect popup

* Rule - Validate that a certain rule fired.
* Fact value - Validate fact values for a fact created in the Given section.

« Any fact that matches - Validate that there is at least one fact in the knowledge base with the
specified field values.

564

Authoring Assets

16.8.4. Global Section

New global ﬁ
b New global

Global: ilogoer | Add |

Figure 16.69. Global popup

» Global - Validate that the global field values.

16.8.5. New Input Section

New input o ‘
£ MNew input |
Call a method on an existing fact:fa "l Add |

Figure 16.70. New Input popup
« Call method on an existing fact - Call a method from a fact in the beginning of the rule execution.
16.9. Functions

Functions are another asset type. They are NOT rules, and should only be used when necessary.
The function editor is a textual editor. Functions

-
function <returmnType= funcName(<args here=) |

/lcode goes in here...

Figure 16.71. Function

565

Authoring Assets

16.10. DSL editor

The DSL editor allows DSL Sentences to be authored. The reader should take time to explore
DSL features in the Drools Expert documentation; as the syntax in Drools Workbench's DSL Editor
is identical. The normal syntax is extended to provide "hints" to control how the DSL variable is
rendered and validated within the user-interface.

The following "hints" are supported:-

« {<varName>:<regular expression>}

This will render a text field in place of the DSL variable when the DSL Sentence is used in the
guided editor. The content of the text field will be validated against the regular expression.

» {<varName>:ENUM:<factType.fieldName>}

This will render an enumeration in place of the DSL variable when the DSL Sentence is used
in the guided editor. <factType.fieldName> binds the enumeration to the model Fact and Field
enumeration definition. This could be either a "Drools Workbench enumeration” (i.e. defined
within the Workbench) or a Java enumeration (i.e. defined in a model POJO JAR file).

» {<varName>:DATE:<dateFormat>}

This will render a Date selector in place of the DSL variable when the DSL Sentence is used
in the guided editor.

» {<varName>:BOOLEAN:<[checked | unchecked]>}

This will render a dropdown selector in place of the DSL variable, providing boolean choices,
when the DSL Sentence is used in the guided editor.

» {<varName>:CF:<factType.fieldName>}

This will render a button that will allow you to set the value of this variable using a Custom
Form. In order to use this feature, a Working-Set containing a Custom Form Configuration for
factType.fieldName must be active. If there is no such Working-Set, a simple text box is used
(just like a regular variable).

For more information, please read more about Working-Sets and Custom Form Configurations.

566

Authoring Assets

File Edit Source

Attributes | Edit

[when]When the credit rating is {rating:ENUM:Applicant.creditRating} = applicant:Applicant(creditRating=="{rating}")
[when]When the applicant dates 1s after {dos:DATE:default} = applicant:Applicant(applicationDate>"{dos}")

[when]When the applicant approval is {bool:BOOLEAN:checked} = applicant:Applicant (approved=={bool})

[when]When the ages is less than {num:1?7[0-9]?[0-9]} = applicant:Applicant(age<{num})

[then] Approve the loan = applicant.setApproved(true);

[then]Set applicant name to {name} = applicant.setName("{name}");

Figure 16.72. DSL rule

16.11. Data enumerations (drop down list configura-
tions)

Data enumerations are an optional asset type that technical folk can configure to provide drop
down lists for the guided editor. These are stored and edited just like any other asset, and apply
to the package that they belong to.

The contents of an enum config are a mapping of Fact.field to a list of values to be used in a
drop down. That list can either be literal, or use a utility class (which you put on the classpath) to
load a list of strings. The strings are either a value to be shown on a drop down, or a mapping
from the code value (what ends up used in the rule) and a display value (see the example below,

using the '=").
Enum Editor [credit ratings] Save Delete Rerame Copy Valdate % @~
Add enum
Fact Field Context
= Applicant creditRating [AA, "OK!, "Sub prime]
= Ferson age [20',25",'30","35

Figure 16.73. Data enumeration

In the above diagram - the "MM" indicates a value that will be used in the rule, yet "Mini Mal" will
be displayed in the GUI.

Getting data lists from external data sources: It is possible to have Drools Workbench call a piece
of code which will load a list of Strings. To do this, you will need a bit of code that returns a

567

Authoring Assets

java.util.List (of String's) to be on the classpath of Drools Workbench. Instead of specifying
a list of values in Drools Workbench itself - the code can return the list of Strings (you can use the
"=" inside the strings if you want to use a different display value to the rule value, as normal). For
example, in the 'Person.age’ line above, you could change it to:

Ferson age (new com.yourco.DataHelper()).getListOfAges()

Figure 16.74.

This assumes you have a class called "DataHelper" which has a method "getListOfAges()" which
returns a List of strings (and is on the classpath). You can of course mix these "dynamic" enu-
merations with fixed lists. You could for example load from a database using JDBC. The data
enumerations are loaded the first time you use the guided editor in a session. If you have any
guided editor sessions open - you will need to close and then open the rule to see the change.

16.11.1. Advanced enumeration concepts

There are a few other advanced things you can do with data enumerations.

Drop down lists that depend on field values: Lets imagine a simple fact model, we have a class
called Vehicle, which has 2 fields: "engineType" and "fuelType". We want to have a choice for the
"engineType" of "Petrol" or "Diesel". Now, obviously the choice type for fuel must be dependent on
the engine type (so for Petrol we have ULP and PULP, and for Diesel we have BIO and NORMAL).
We can express this dependency in an enumeration as:

Wehicle engineType ['Petrol', Tiesel']

Wehicle fuelType[engineType = Petrol] ['ULF', 'PULP"]

Wehicle fuelType[engineType = Diesel] ['BIO, MORMAL']
Figure 16.75.

This shows how it is possible to make the choices dependent on other field values. Note that once
you pick the engineType, the choice list for the fuelType will be determined.

Loading enums programmatically: In some cases, people may want to load their enumeration data
entirely from external data source (such as a relational database). To do this, you can implement
a class that returns a Map. The key of the map is a string (which is the Fact.field name as shown
above), and the value isajava. util . Li st of Strings.

public class Sanpl eDat aSource2 {

public Map<String>, List<String> |oadData() {
Map data = new HashMap();

568

Authoring Assets

List d = new ArrayList();
d. add("val uel");

d. add("val ue2");

dat a. put ("Fact.field", d);

return data;

And in the enumeration in the BRMS, you put:

=(new Sanpl eDat aSour ce2()) .| oadDat a()

The "=" tells it to load the data by executing your code.

Mode advanced enumerations: In the above cases, the values in the lists are calculated up front.
This is fine for relatively static data, or small amounts of data. Imagine a scenario where you have
lists of countries, each country has a list of states, each state has a list of localities, each locality
has a list of streets and so on... You can see how this is a lot of data, and it can not be loaded up.
The lists should be loaded dependent on what country was selected etc...

Well the above can be addressed in the following fashion:

Fact field[dependentField]l, dependentField2] (new com yourco.DataHelper()) getListOfAges("@{dependentFieldl}’, "@{dependentField2}")

Figure 16.76.

Similar to above, but note that we have just specified what fields are needed, and also on the
right of the ":" there are quotes around the expression. This expression will then be evaluated,
only when needed, substituting the values from the fields specified. This means you can use the
field values from the GUI to drive a database query, and drill down into data etc. When the drop
down is loaded, or the rule loaded, it will refresh the list based on the fields. 'dependentField1’
and 'dependentField2' are names of fields on the 'Fact' type - these are used to calculate the list
of values which will be shown in a drop down if values for the "field".

16.12. Technical rules (DRL)

Technical (DRL) rules are stored as text - they can be managed in Drools Workbench. A DRL
can either be a whole chunk of rules, or an individual rule. if its an individual rule, no package
statement or imports are required (in fact, you can skip the "rule" statement altogether, just use
"when" and "then" to mark the condition and action sections respectively). Normally you would
use the IDE to edit raw DRL files, since it has all the advanced tooling and content assistance and
debugging. However, there are times when a rule may have to deal with something fairly technical
in a package in Drools Workbench. In any typical package of rules, you generally have a need for
some "technical rules" - you can mix and match all the rule types together of course.

569

Authoring Assets

package org.mortgages
rule 'Dummy rule’
salience 100 // This can short circuit any processing

when

a Approve()

p : Folicy()
then

p.setApproved(true J;

System.out.printin{ "AFFROVED: " + a.getHeasunGh;
end

Figure 16.77. DRL technical rule

570

Chapter 17. Workbench Integration

17.1. REST

REST API calls to Knowledge Store allow you to manage the Knowledge Store content and ma-
nipulate the static data in the repositories of the Knowledge Store. The calls are asynchronous,
that is, they continue their execution after the call was performed as a job. The job ID is returned
by every calls to allow after the REST API call was performed to request the job status and verify
whether the job finished successfully. Parameters of these calls are provided in the form of JSON
entities.

When using Java code to interface with the REST API, the classes used in
POST operations or otherwise returned by various operations can be found in the
(org. ki e. wor kbench. servi ces:) ki e- wb- conmon- ser vi ces JAR. All of the classes mentioned
below can be found in the or g. ki e. wor kbench. common. servi ces. shar ed. r est package in that
JAR.

17.1.1. Job calls

Every Knowledge Store REST call returns its job ID after it was sent. This is necessary as the
calls are asynchronous and you need to be able to reference the job to check its status as it goes
through its lifecycle. During its lifecycle, a job can have the following statuses:
* ACCEPTED: the job was accepted and is being processed
* BAD_REQUEST: the request was not accepted as it contained incorrect content
e RESOURCE_NOT_EXI ST: the requested resource (path) does not exist
* DUPLI CATE_RESOURCE: the resource already exists
e SERVER ERROR: an error on the server occurred
* SUCCESS: the job finished successfully
e FAI L: the job failed
« DENI ED: the job was denied
e GONE: the job ID could not be found
A job can be GONE in the following cases:
» The job was explicitly removed

» The job finished and has been deleted from the status cache (the job is removed from status
cache after the cache has reached its maximum capacity)

571

Workbench Integration

* The job never existed

The following j ob calls are provided:

[GET] /jobs/{jobID}
Returns the job status

Returns a JobResul t instance

Example 17.1. An example (formatted) response body to the get job call
on arepository clone request

{
"status":" SUCCESS",
"jodld":"1377770574783- 27",
"result":"Alias: t est I nst al | AndDepl oyPr oj ect, Schene: git, Uri: git://
test I nstal | AndDepl oyProj ect"”,
"] ast Modi fied": 1377770578194, "det ai | edResul t": nul |

pr

[DELETE] /jobs/{jobID}
Removes the job: If the job is not yet being processed, this will remove the job from the job
queue. However, this will not cancel or stop an ongoing job

Returns a JobResul t instance

17.1.2. Repository calls

Repository calls are calls to the Knowledge Store that allow you to manage its Git repositories
and their projects.

The following r eposi t ori es calls are provided:

[GET] /repositories
Gets information about the repositories in the Knowledge Store

Returns a Col | ecti on<Map<String, String>> or Collection<RepositoryRequest> in-
stance, depending on the JSON serialization library being used. The keys used in the
Map<St ring, String> instance match the fields in the Reposi t or yRequest class

Example 17.2. An example (formatted) response body to the get
repositories call

"nanme": " wb- asset s",

572

Workbench Integration

"description":"generic assets",
"user Nanme": nul |,

"password": nul |,

"request Type": nul |,
"gitURL":"git://bpns-assets”

},
{
"name": "l oanProject",
"description":"Loan processes and rul es",
"user Nanme": nul |,
"password": nul |,
"request Type": nul |,
"gitURL":"git://Il oansProject”
}

[POST] /repositories
Creates a new empty repository or a new repository cloned from an existing (git) repository

Consumes a Reposi t or yRequest instance

Returns a Cr eat eOr O oneReposi t or yRequest instance

Example 17.3. An example (formatted) response body to the create
repositories call

{
"nanme": " new proj ect-repo”,
"description":"repo for my new project"”,
"user Nane": nul |, "password": nul |,
"request Type": "new",
"gi t URL": nul |

}

[DELETE] /repositories/{repositoryName}
Removes the repository from the Knowledge Store

Returns a RenoveReposi t or yRequest instance

[POST] /repositories/{repositoryName}/projects/
Creates a project in the repository

Consumes an Enti ty instance

Returns a Cr eat ePr oj ect Request instance

Example 17.4. An example (formatted) request body that defines the
project to be created

573

Workbench Integration

"nanme": " nyProject",
"description": "ny project"

}

17.1.3. Organizational unit calls

Organizational unit calls are calls to the Knowledge Store that allow you to manage its organiza-
tional units, so as to organize the connected Git repositories.

The following or gani zat i onal Uni t s calls are provided:
[POST] /organizationalunits
Creates an organizational unit in the Knowledge Store
Consumes an Or gani zat i onal Uni t instance

Returns a Cr eat eOr gani zat i onal Uni t Request instance

Example 17.5. An example (formatted) request body defining a new
organizational unit to be created

"name":"testgroup”,

"description":"",

"owner":"tester",
"repositories":["test GoupRepository"]

[POST] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}
Adds the repository to the organizational unit

Returns a AddReposi t or yToOr gani zat i onal Uni t Request instance

[DELETE] /organizationalunits/{organizationalUnitName}/repositories/{repositoryName}
Removes the repository from the organizational unit

Returns a RenoveReposi t or yFr onOr gani zat i onal Uni t Request instance

17.1.4. Maven calls

Maven calls are calls to a Project in the Knowledge Store that allow you compile and deploy the
Project resources.

The following maven calls are provided:

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/compile
Compiles the project (equivalent to mvn conpi | e)

574

Workbench Integration

Consumes a Bui | dConf i g instance. While this must be supplied, it's not needed for the op-
eration and may be left blank.

Returns a Conpi | ePr oj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/install
Installs the project (equivalentto nvn install)

Consumes a Bui | dConf i g instance. While this must be supplied, it's not needed for the op-
eration and may be left blank.

Returns a | nst al | Proj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/test
Compiles the project runs a test as part of compilation

Consumes a Bui | dConfi g instance
Returns a Test Pr oj ect Request instance

[POST] /repositories/{repositoryName}/projects/{projectName}/maven/deploy
Deploys the project (equivalent to mnvn depl oy)

Consumes a Bui | dConf i g instance. While this must be supplied, it's not needed for the op-
eration and may be left blank.

Returns a Depl oyPr oj ect Request instance

17.1.5. REST summary

The URL templates in the table below are relative the following URL:

e http://server:port/business-central/rest

Table 17.1. Knowledge Store REST calls

URL Template Type | Description
/jobs/{jobID} GET | return the job status
/jobs/{jobID} DELETEemove the job
/organizationalunits GET | return a list of organiza-
tional units
/organizationalunits POST | create an organization-

al unit in the Knowledge
Store described by the
JSON Or gani zat i onal U

ni t entity
/organizationalunits/{organizationalUnitName}/reposito- POST | add a repository to an or-
ries/{repositoryName} ganizational unit

575

Workbench Integration

URL Template Type | Description
/organizationalunits/{organizationalUnitName}/reposito- DELETEemove a repository from
ries/{repositoryName} an organizational unit
[repositories/ POST | add the repository to the
organizational unit de-
scribed by the JSON
Reposi t or yRegest entity
/repositories GET | return the repositories in
the Knowledge Store
/repositories/{repositoryName} DELETEemove the repository
from the Knowledge Store
Irepositories/ POST | create or clone the repos-
itory defined by the JSON
Reposi t or yRequest entity
/repositories/{repositoryName}/projects/ POST | create the project defined
by the JSON entity in the
repository
[repositories/{repositoryName}/projects/{project- POST | compile the project
Name}/maven/compile/
/repositories/{repositoryName}/projects/{project- POST | install the project
Name}/maven/install
/repositories/{repositoryName}/projects/{project- POST compile the project and
Name}/maven/test/ run tests as part of compi-
lation
[repositories/{repositoryName}/projects/{project- POST | deploy the project

Name}/maven/deploy/

576

Chapter 18. Workbench High
Availability

18.1.1. VFS clustering

The VFS repositories (usually git repositories) stores all the assets (such as rules, decision tables,
process definitions, forms, etc). If that VFS resides on each local server, then it must be kept in
sync between all servers of a cluster.

Use Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http:/
helix.incubator.apache.org/] to accomplish this. Zookeeper glues all the parts together. Helix is
the cluster management component that registers all cluster details (nodes, resources and the
cluster itself). Uberfire (on top of which Workbench is build) uses those 2 components to provide
VFS clustering.

To create a VFS cluster:

1. Download Apache Zookeeper [http://zookeeper.apache.org/] and Apache Helix [http://
helix.incubator.apache.org/].

2. Install both:
a. Unzip Zookeeper into a directory ($ZOOKEEPER_HOME).
b. In $ZOOKEEPER_HOME, copy zoo_sanpl e. conf to zoo. conf

c. Edit zoo. conf . Adjust the settings if needed. Usually only these 2 properties are relevant:

the directory where the snapshot is stored.databDir=/tnp/zookeeper# the port at which the
clients will connectclientPort=2181
is

stored. dat aDi r =/ t np/ zookeeper# the port at which the clients

d. Unzip Helix into a directory ($HELI X_HOVE).
3. Configure the cluster in Zookeeper:

a. Go to its bi n directory:
$ cd $ZOOKEEPER_HOVE/ bi n

b. Start the Zookeeper server:

577

http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://zookeeper.apache.org/
http://zookeeper.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/
http://helix.incubator.apache.org/

Workbench High Availability

$ sudo ./zkServer.sh start

If the server fails to start, verify that the dat aDi r (as specified in zoo. conf) is accessible.

c. To review Zookeeper's activities, open zookeeper . out :

$ cat $ZOOKEEPER_HOME/ bi n/ zookeeper . out

4. Configure the cluster in Helix:

a. Go to its bi n directory:

$ cd $HELI X_HOVE/ bi n

b. Create the cluster:

$./helix-adm n.sh --zkSvr |ocal host: 2181 --addd uster kie-cluster

The zkSvr value must match the used Zookeeper server. The cluster name (ki e- cl ust er)
can be changed as needed.

c. Add nodes to the cluster:

Node 1
$./helix-admi n.sh --zkSvr | ocal host: 2181 --addNode ki e-cluster nodeOne: 12345
Node 2
$./helix-adm n.sh --zkSvr |ocal host: 2181 --addNode ki e-cl uster nodeTwo: 12346

Usually the number of nodes a in cluster equal the number of application servers in the
cluster. The node names (nodeOne: 12345 , ...) can be changed as needed.

d. Add resources to the cluster:

578

Workbench High Availability

$./helix-adm n.sh --zkSvr |ocal host:2181 --addResource kie-cluster vfs-repo 1 LeaderS
t andby AUTO_REBALANCE

The resource name (vf s- r epo) can be changed as needed.

e. Rebalance the cluster to initialize it:

$./helix-adm n.sh --zkSvr |ocal host: 2181 --rebal ance ki e-cluster vfs-repo 2

f. Start the Helix controller to manage the cluster:

$./run-helix-controller.sh --zkSvr |ocal host:2181 --cluster kie-cluster 2>& > /tnp/
controller.log &

5. Configure the security domain correctly on the application server. For example on WildFly and
JBoss EAP:
a. Edit the file $JBCSS_HOVE/ domai n/ confi gurati on/ domai n. xni .

For simplicity sake, presume we use the default domain configuration which uses the profile
ful | that defines two server nodes as part of mai n- ser ver - gr oup.

b. Locate the profile f ul | and add a new security domain by copying the other security domain
already defined there by default:

<security-domai n name="ki e-i de" cache-type="defaul t"> <aut henti cati on> <l ogi n-
nmodul e code="Renoting" flag="optional "> <nmodul e- opti on nanme="passwor d- st acki ng"
val ue="useFirst Pass"/> </l ogi n- modul e> <l ogi n-nodul e code="Real nDirect"
flag="required"> <nodul e- opti on nane="passwor d- st acki ng" val ue="useFi rst Pass"/
> </ | ogi n- nodul e> </ aut henti cati on></ security-domai n>
ide" cache-type="default">

<aut henti cati on> <l ogi n- nodul e
code="Renoti ng" flag="optional "> <nmodul e- opti on nane="passwor d-
stacki ng" val ue="useFirstPass"/>
</ 1 ogi n- rodul e> <l ogi n- nodul e
code="Real nDirect" flag="required"> <nodul e- opti on nanme="passwor d-

stacki ng" val ue="useFirstPass"/>
</ | ogi n- nodul e>
</

Important

The security-domain name is a magic value.

579

Workbench High Availability

6. Configure the system properties for the cluster on the application server. For example on Wild-
Fly and JBoss EAP:

a. Edit the file $JBOSS_HOME/ domai n/ confi gurati on/ host . xn .

b. Locate the XML elements ser ver that belong to the mai n- ser ver - gr oup and add the nec-
essary system property.

For example for nodeOne:

<system properties>
<property name="j boss. node. nane" val ue="nodeOne" boot-tine="fal se"/>
<property name="org.uberfire.nio.git.dir" value="/tnp/kie/nodeone" boot-tine="false"/>
<property nanme="org.uberfire.nmetadata.index.dir" value="/tnp/kie/ nodeone" boot-
tine="fal se"/>
<property name="org.uberfire.cluster.id" value="kie-cluster" boot-tine="false"/>
<property name="org.uberfire.cluster.zk" val ue="Iocal host: 2181" boot-ti ne="fal se"/>
<property nanme="org. uberfire.cluster.local.id" val ue="nodeOne_12345" boot-ti ne="fal se"/>
<property name="org.uberfire.cluster.vfs.lock" val ue="vfs-repo" boot-tinme="fal se"/>
<l-- If you're running both nodes on the sane nachine: -->
<property name="org.uberfire.nio.git.daenon.port" val ue="9418" boot-tine="fal se"/>
</ system properties>

And for nodeTwo:

<system properties>
<property name="j boss. node. nane" val ue="nodeTwo" boot-tine="fal se"/>
<property name="org.uberfire.nio.git.dir" value="/tnp/kie/nodetw" boot-tine="false"/>
<property nanme="org.uberfire.netadata.index.dir" value="/tnp/kie/nodetwo" boot-
time="fal se"/>
<property name="org.uberfire.cluster.id" value="kie-cluster" boot-tine="false"/>
<property name="org. uberfire.cluster.zk" val ue="Il ocal host:2181" boot-tine="fal se"/>
<property nanme="org.uberfire.cluster.local.id" val ue="nodeTwo_12346" boot-ti ne="fal se"/>
<property name="org.uberfire.cluster.vfs.lock" val ue="vfs-repo" boot-tinme="fal se"/>
<l-- If you're running both nodes on the sane machi ne: -->
<property name="org.uberfire.nio.git.daenon.port" val ue="9419" boot-tine="fal se"/>
</ system properties>

Make sure the cluster, node and resource names match those configured in Helix.

18.1.2. jBPM clustering

In addition to the information above, jBPM clustering requires additional configuration. See this
blog post [http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html] to configure the
database etc correctly.

580

http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html
http://mswiderski.blogspot.com.br/2013/06/clustering-in-jbpm-v6.html

Part VI. KIE Server

The KIE Server is a standalone execution server for rules.

Chapter 19. KIE Execution Server

19.1. Introduction

The KIE Execution Server is a standalone, out-of-the-box component that can be used to instan-
tiate and execute rules via interfaces available for REST, JMS or a Java client side application.
Created as a web deployable WAR file, this engine can be deployed on any web container.

This server has a low footprint, with minimal memory consumption, and therefore, can be deployed
easily on a cloud instance. Each instance of this server can open and instantiate multiple Kie
Containers which allows you to execute multiple rule services in parallel.

You can provision execution server instances via KIE Workbench. In this chapter, we will go
through the steps required to setup an execution server, provision and connect to this server via
KIE Workbench, control what rule artifacts go in each instance and go through its lifecycle.

19.2. Installing the KIE Execution Server

The KIE Execution Server is distributed as a web application archive (WAR) file. The WAR file
comes in three different flavors:

* webc - WAR for ordinary Web (Servlet) containers like Tomcat
* eeb - WAR for JavaEE 6 containers like JBoss EAP 6.x
* ee7 - WAR for JavaEE 7 containers like WildFly 8.x

To install the KIE Execution Server and verify it is running, complete the following steps:

1. Deploy the WAR file into your web container.
2. Create a user with the role of ki e- ser ver on the container.

3. Test that you can access the execution engine by navigating to the endpoint in a browser
window: ht t p: / / SERVER PORT/ CONTEXT/ servi ces/ rest/server/ .

4. When prompted for username/password, type in the username and password that you created
in step 2.

5. Once authenticated, you will see an XML response in the form of engine status, similar to this:

Example 19.1. Sample handshaking server response

<response type="SUCCESS" nsg="KI E Server info">

582

KIE Execution Server

<ki e- server-info>
<versi on>6. 3. 0. Bet al</ ver si on>
</ ki e-server-i nf o>
</ response>

19.2.1. Installation details for different containers

19.2.1.1. Tomcat 7.x/8.x

1. Download and unzip the Tomcat distribution. Let's call the root of the distribution TOMCAT _HOME.
This directory is named after the Tomcat version, so for example apache-t ontat - 7. 0. 55.

2. Download kie-server-6.3.0.Betal-webc.war and place it into TOVCAT_HOVE/ webapps.

3. Configure user(s) and role(s). Make sure that file TOMCAT_HOVE/ conf/ t oncat - user s. xnl con-
tains the following username and role definition. You can of course choose different username
and password, just make sure that the user has role ki e- server:

Example 19.2. Username and role definition for Tomcat

<rol e rol ename="ki e-server"/>
<user usernane="serveruser" password="ny.s3cr3t.pass" rol es="ki e-server"/>

4. Start the server by running TOMCAT_HOME/ bi n/ start up. [sh| bat]. You can check out the
Tomcat logs in TOMCAT_HOME/ | ogs to see if the application deployed successfully.

5. Verify the server is running. Go to ht t p: / / SERVER: PORT/ CONTEXT/ ser vi ces/ rest/server/
and type the specified username and password. You should see simple XML message with
basic information about the server.

4w Important
" (] You can not leverage the JMS interface when running on Tomcat, or any other

Web container. The Web container version of the WAR contains only the REST
interface.

19.2.1.2. WildFly 8.x

1. Download and unzip the WildFly distribution. Let's call the root of the distribution W LDFLY_HOVE.
This directory is named after the WildFly version, so for example wi | df | y-8. 2. 0. Fi nal .

2. Download kie-server-6.3.0.Betal-ee7.war and place it into W LDFLY_HOME/ st andal one/ de-
pl oyment s.

583

KIE Execution Server

3. Configure user(s) and role(s). Execute the following command W LDFLY_HOVE/ bi n/ add-
user.[sh|bat] -a -u 'serveruser' -p 'ny.s3cr3t.pass' -ro 'kie-server'.Youcan
of course choose different username and password, just make sure that the user has role ki e-
server.

4. Start the server by running W LDFLY_HOVE/ bi n/ st andal one. [sh| bat] -c stand-
al one-ful | .xm . You can check out the standard output or WildFly logs in W LDFLY_HOVE/
st andal one/ | ogs to see if the application deployed successfully.

5. Verify the server is running. Go to htt p: / / SERVER: PORT/ CONTEXT/ ser vi ces/ rest/ server/
and type the specified username and password. You should see simple XML message with
basic information about the server.

19.3. Registering a server

To register a new KIE Execution Server instance, click on Deploy _, Rule Deployments in
KIE Workbench. This will open up the screen to show you any existing servers that you have
registered. Click on Register to bring up the screen for entering details for a new server.

Enter details of your new server by specifying the endpoint and giving it a unique and identifiable
name.

The endpoint should be the same you used to verify that the server was running in the previous
section and looks like this: htt p: // SERVER: PORT/ CONTEXT/ ser vi ces/ rest/ server . Also pro-
vide a unique identifiable name for this server.

Although the username/password sections are not mandatory, unless you specifically take away
the authentication required for your kie-server webapp, then you will need to enter these. These
values should match the ones created in the previous section when you were installing this webapp
with the role of ki e- server.

Click Connect to connect and register this server. If you have successfully entered all the details,
your server will be listed in the Rule Deployments Screen.

Common errors at this stage include issues like invalid username/password or the username not
having the required ki e- ser ver role or the endpoint not being correct. All of these issues will give
the same error; Can't connect to endpoint

19.4. Creating a Kie Container

Once your Execution Server is registered, you can start adding Kie Containers to it.
Kie Containers are self contained environments that have been provisioned to hold instances of

your packaged and deployed rule instances.

1. Start by clicking the + icon next to the Execution Server where you want to deploy your Con-
tainer. This will bring up the New Container screen.

584

KIE Execution Server

2. If you know the Group Name, Artifact Id and Version (GAV) of your deployed package, then
you can enter those details and click the Ok button to select that instance (and provide a name
for the Container);

3. If you don't know these values, you can search KIE Workbench for all packages that can be
deployed. Click the Search button without entering any value in the search field (you can narrow
your search by entering any term that you know exists in the package that you want to deploy).

Important

—~ I
)

INSERT SCREENSHOT HERE

The figure above shows that there are three deployable packages available to be used as
containers on the Execution Server. Select the one that you want by clicking the Select button.
This will auto-populate the GAV and you can then click the Ok button to use this deployable
as the new Container.

4. Enter a name for this Container at the top and then press the Ok button.

Important

The Container name must be unigue inside each execution server and must not

contain any spaces.

@ Note
Just below the GAV row, you will see an uneditable row that shows you the URL
for your Container against which you will be able to execute REST commands.

19.5. Managing Containers

Containers within the Execution Server can be started, stopped and updated from within KIE
Workbench.

19.5.1. Starting a Container

Once registered, a Container is in the 'Stopped’' mode. It can be started by first selecting it and
then clicking the Start button. You can also select multiple Containers and start them all at the
same time.

Once the Container is in the 'Running' mode, a green arrow appears next to it. If there are any
errors starting the Container(s), red icons appear next to Containers and the Execution Server
that they are deployed on.

585

KIE Execution Server

You should check the logs of both the Execution Server and the current Business Central to see
what the errors are before redeploying the Containers (and possibly the Execution Server).

19.5.2. Stopping and Deleting a Container

Similar to starting a Container, select the Container(s) that you want to stop (or delete) and click the
Stop button (which replaces the Start button for that Container once it has entered the 'Running’
mode) or the Delete button.

19.5.3. Updating a Container

You can update deployed Ki eCont ai ner s without restarting the Execution Server. This is useful
in cases where the Business Rules change, creating new versions of packages to be provisioned.

You can have multiple versions of the same package provisioned and deployed, each to a different
Ki eCont ai ner.

To update deployments in a Ki eCont ai ner dynamically, click on the icon next to the Container.
This will open up the Container Info screen. An example of this screen is shown here:

Important

INSERT SCREENSHOT HERE

The Container Info screen is a useful tool because it not only allows you to see the endpoint for
this Ki eCont ai ner, but it also allows you to either manually or automatically refresh the provision
if an update is available. The update can be manual or automatic:

Manual Update: To manually update a Ki eCont ai ner, enter the new Version number in the
Version box and click on the Update button. You can of course, update the Group Id or the Artifact
Id , if these have changed as well. Once updated, the Execution server updates the container
and shows you the resolved GAV attributes at the bottom of the screen in the Resolved Release
Id section.

Automatic Update: If you want a deployed Container to always have the latest version of your
deployment without manually editing it, you will need to set the Version property to the value of
LATEST and start a Scanner . This will ensure that the deployed provision always contains the latest
version. The Scanner can be started just once on demand by clicking the Scan Now button or you
can start it in the background with scans happening at a specified interval (in seconds).You can
also set this value to LATEST when you are first creating this deployment. The Resolved Release
Id in this case will show you the actual, latest version number.

19.6. REST API

The Execution Server supports the following commands via the REST API.

586

KIE Execution Server

Please note the following before using these commands:

e The base URL for these will remain as the endpoint defined earlier (for example: http://
SERVER: PORT/ CONTEXT/ ser vi ces/ rest/server/)

« All requests require basic HTTP Authentication for the role kie-server as indicated earlier.

19.6.1. [GET] /

Returns the Execution Server information

Example 19.3. Example Server Response

<response type="SUCCESS" nsg="KI E Server info">
<ki e- server-inf o>
<versi on>6. 2. 0. redhat - 1</ ver si on>
</ ki e-server-info>
</ response>

19.6.2. [POST] /

Using POST HTTP method, you can execute various commands on the Execution Server. E.qg:
create-container, list-containers, dispose-container and call-container.

19.6.3. [GET] /containers

Returns a list of containers that have been created on this Execution Server.

Example 19.4. Example Server Response

<response type="SUCCESS" nsg="List of created containers">
<ki e- cont ai ner s>
<ki e-cont ai ner contai ner-id="M/ProjectContainer" status="STARTED'>
<rel ease-i d>
<artifact-id>Projectl</artifact-id>
<group-i d>com r edhat </ gr oup-i d>
<versi on>1. 0</ ver si on>
</rel ease-id>
<resol ved-rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup-i d>
<versi on>1. 0</ ver si on>
</resol ved-rel ease-i d>
</ ki e- cont ai ner >
</ ki e- cont ai ner s>
</ response>

587

KIE Execution Server

19.6.4. [GET] /containers/{id}

Returns the status and information about a particular container. For example, executing htt p: / /
SERVER: PORT/ CONTEXT/ ser vi ces/ rest/ server/ cont ai ners/ MyPr oj ect Cont ai ner could re-
turn the following example container info.

Example 19.5. Example Server Response

‘<response type="SUCCESS"' nsg="Info for container MyProjectContainer">
<ki e-cont ai ner contai ner-id="M/ProjectContainer" status="STARTED">
<rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup- i d>
<ver si on>1. 0</ ver si on>
</rel ease-id>
<resol ved-rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup- i d>
<ver si on>1. 0</ ver si on>
</resol ved-rel ease-i d>
</ ki e- cont ai ner >
</ response>

19.6.5. [PUT] /containers/{id}

Allows you to create a new Container in the Execution Server. For example, to create a Contain-
er with the id of MyRESTContainer the complete endpoint will be: htt p: / / SERVER PORT/ CON-
TEXT/ servi ces/rest/server/ cont ai ner s/ MyRESTCont ai ner . An example of request is:

Example 19.6. Example Request to create a container

<ki e-cont ai ner contai ner-i d="M/RESTCont ai ner" >
<rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup-i d>
<ver si on>1. 0</ ver si on>
</rel ease-i d>
</ ki e- cont ai ner >

And the response from the server, if successful, would be be:

Example 19.7. Example Server Response when creating a container

<response type="SUCCESS" nsg="Container MRESTContainer successfully deployed wth nodule
comredhat: Project1:1.0">
<ki e-cont ai ner contai ner-i d="M/Proj ect Contai ner" status="STARTED" >
<rel ease-i d>
<artifact-id>Projectl</artifact-id>

588

KIE Execution Server

<group-i d>com redhat </ gr oup-i d>
<versi on>1. 0</ ver si on>

</rel ease-id>

<resol ved-rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup- i d>
<versi on>1. 0</ versi on>

</resol ved-rel ease-i d>

</ ki e-cont ai ner >
</ response>

19.6.6. [DELETE] /containers/{id}

Disposes the Container specified by the id. For example, executing http:// SERVER PORT/
CONTEXT/ ser vi ces/ rest/ server/ cont ai ner s/ MyPr oj ect Cont ai ner using the DELETE HTTP
method will return the following server response:

Example 19.8. Example Server Response disposing a container

<response type="SUCCESS" nsg="Cont ai ner MyProj ect Cont ai ner successfully di sposed."/>

19.6.7. [POST] /containers/{id}

Executes operations and commands against the specified Container. You can send commands
to this Container in the body of the POST request. For example, to fire all rules for Container
with id MyRESTContainer (htt p: // SERVER: PORT/ CONTEXT/ ser vi ces/ rest/ server/ cont ai n-
er s/ MyRESTCont ai ner), you would send the fire-all-rules command to it as shown below (in the
body of the POST request):

Example 19.9. Example Server Request to fire all rules

<fire-all-rules/>

Any valid command (of the type org.kie.api.Command) with correct attributes can be used.

19.6.8. [GET] /containers/{id}/release-id
Returns the full release id for the Container specified by the id.

Example 19.10. Example Server Response

“<response type="SUCCESS"' nsg="Rel easeld for container M/ProjectContainer">
<rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup-i d>
<ver si on>1. 0</ ver si on>

589

KIE Execution Server

</rel ease-i d>
</ response>

19.6.9. [POST] /containers/{id}/release-id

Allows you to update the release id of the container deployment. Send the new complete release
id to the Server.

Example 19.11. Example Server Request

<rel ease-i d>
<artifact-id>Projectl</artifact-id>
<gr oup-i d>com r edhat </ gr oup- i d>
<version>1. 1</ versi on>

</rel ease-id>

The Server will respond with a success or error message, similar to the one below:

Example 19.12. Example Server Response

<response type="SUCCESS' mnsg="Rel ease id successfully updated."> <release-id> <artifact-
i d>Projectl1</artifact-id> <gr oup-i d>com r edhat </ gr oup-i d> <ver si on>1. 0</ ver si on> </
rel ease-i d> </response>

fully up

dated."> <rel ease-id>

<artifact-id>Projectil</artifact-id>
<group-i d>com r edhat </ gr oup-i d>
<versi on>1. 0</ ver si on>

19.6.10. [GET] /containers/{id}/scanner

Returns information about the scanner for this Container's automatic updates.

Example 19.13. Example Server Response

<response type="SUCCESS"' nsg="Scanner info successfully retrieved">
<ki e- scanner st atus="DI SPOSED"/ >
</ response>

19.6.11. [POST] /containers/{id}/scanner

Allows you to start or stop a scanner that controls polling for updated Container deployments.
To start the scanner, send a request similar to: ht t p: / / SERVER PORT/ CONTEXT/ ser vi ces/ rest/
server/ cont ai ners/{cont ai ner-i d}/ scanner with the following POST data.

590

KIE Execution Server

Example 19.14. Example Server Request to start the scanner

<ki e- scanner status="STARTED"' poll-interval ="20"/>

The poll-interval attribute is in seconds. The response from the server will be similar to:

Example 19.15. Example Server Response

<response type="SUCCESS" nsg="Ki e scanner successfully created.">
<ki e- scanner status="STARTED'/ >
</ response>

To stop the Scanner, replace the status with DI SPCSED and remove the poll-interval attribute.

501

Part VII. Drools Examples

Examples to help you learn Drools

Chapter 20. Examples

20.1. Getting the Examples

Make sure the Drools Eclipse plugin is installed, which needs the Graphical Editing Framework
(GEF) dependency installed first. Then download and extract the drools-examples zip file, which
includes an already created Eclipse project. Import that project into a new Eclipse workspace. The
rules all have example classes that execute the rules. If you want to try the examples in another
project (or another IDE) then you will need to set up the dependencies by hand, of course. Many,
but not all of the examples are documented below, enjoy!

Some examples require Java 1.6 to run.

20.2. Hello World

Name: Hello World

Mai n cl ass: org. drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
Modul e: dr ool s-exanpl es

Type: Java application

Rules file: HelloWrld.drl

bj ective: denpnstrate basic rules in use

The "Hello World" example shows a simple application using rules, written both using the MVEL
and the Java dialects.

This example demonstrates how to create and use a Ki eSessi on. Also, audit logging and debug
outputs are shown, which is omitted from other examples as it's all very similar.

The following code snippet shows how the session is created with only 3 lines of code.

Example 20.1. HelloWorld: Creating the KieSession

Ki eServi ces ks = Ki eServices. Factory.get();
Ki eCont ai ner kc = ks. get Ki ed asspat hCont ai ner () ;
Ki eSessi on ksessi on = kc. newKi eSessi on("Hel | oWor | dkS") ;

Obtains the Ki eSer vi ces factory. This is the main interface applications use to interact with
the engine.

Creates a Ki eCont ai ner from the project classpath. This will look for a / META- 1 NF/
kmodul e. xm file to configure and instantiate the Ki eMbdul e into the Ki eCont ai ner .
Creates a session based on the named "HelloWorldKS" session configuration.

Drools has an event model that exposes much of what's happening internally. Two default debug
listeners are supplied, DebugAgendaEvent Li st ener and DebugWér ki ngMenor yEvent Li st ener

593

Examples

which print out debug event information to the Syst em err stream displayed in the Console win-
dow. Adding listeners to a Session is trivial, as shown in the next snippet. The Ki eRunt i meLogger
provides execution auditing, the result of which can be viewed in a graphical viewer. The logger is
actually a specialised implementation built on the Agenda and Rul eRunt i ne listeners. When the
engine has finished executing, | ogger . cl ose() must be called.

Most of the examples use the Audit logging features of Drools to record execution flow for later
inspection.

Example 20.2. HelloWorld: Event logging and Auditing

/1 The application can also setup |listeners
ksessi on. addEvent Li st ener (new DebugAgendaEvent Li stener());
ksessi on. addEvent Li st ener (new DebugRul eRunt i meEvent Li stener ());

/1 To setup a file based audit |ogger, uncoment the next |ine
/1 KieRuntinmeLogger |ogger = ks.getLoggers().newFil eLogger(ksession, "./helloworld");

/1 To setup a ThreadedFil eLogger, so that the audit viewreflects events whilst debugging,
/1 uncomment the next |ine

/1 KieRuntimeLogger |ogger = Kks.getLoggers().newThreadedFilelLogger(ksession, "./
hel | owor | d", 1000);

The single class used in this example is very simple. It has two fields: the message, which is a
St ri ng and the status which can be one of the two integers HELLO or GOODBYE.

Example 20.3. HelloWorld example: Message Class

public static class Message {

public static final int HELLO = 0;
public static final int GOODBYE = 1,
private String message;
private int st at us;

A single Message object is created with the message text "Hello World" and the status HELLOand
then inserted into the engine, at which point fi reAl | Rul es() is executed.

Example 20.4. HelloWorld: Execution

/1 The application can insert facts into the session
final Message nmessage = new Message();

nmessage. set Message("Hello World");

message. set St at us(Message. HELLO) ;

ksession.insert(nessage);

594

Examples

/[l and fire the rules
ksession.fireAl |l Rul es();

To execute the example as a Java application:

1. Open the class or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e in your Eclipse IDE

2. Right-click the class and select "Run as..." and then "Java application"

If we put a breakpoint on the fi reAl | Rul es() method and select the ksessi on variable, we can
see that the "Hello World" rule is already activate on the Agenda.

] g - drools c/main/javajorg/drools/ IdExample.java - Eclipse SDK [=|[2][x]
File Edit Source Refactor Navigate Search Project Run Window Help

i~ $r O Qv | @™ 4~ o & |##Debug| O Drools &'java
%% Debug 22 i’ & 2D 72 ¥ = 0O evariables ¥ % Breakpoints % B ¥ <0

-

~ @ HelloWorldExample (1) [Drools Application] Name Value

- @ org.drools. examples HelloWorldExample at localhost:45096 v ¥ ksession StatefulknowledgeSessionimpl (id

= o Thread [main] (Suspended (breakpoint at line 63 in HelloWorldExal b o logger KnowledgeRuntimeloggerProviderl

= HelloWorldExample.main(String[]) line: 63

I* © message HelloWorldExamplesMessage (id='»
o1 MotBackedUp/trikkolaftools/jdk1 5.0_15/minfjava (Dec 10, 2008 2:53:¢ [|0
org.drools. impl.StatefulKnowledgeSessionImpl@b70648

[l)| [

4] HelloworldExample java 53 = 8 | & outline £ =08
B KnowledgeHuntimeLogger Logger = KnowledgeHuntimelLoggerractory [+ LR W e W T
.newfFileLogger(ksession, “log/helloworld”); Yz

| # org.drools.examples
- final Message message = new Message();

message. setMessage(“Hello World"); b “= import declarations
message. setStatus(Message.HELLO);
ksession. insert(message);

v (@, HelloWorldExample
ksession. fireAl1Rules(); b @°Message

logger.close();

(1]

al I
& console | & Tasks | ©J b =g

= & MAIN[nofocus]= BinaryHeapQueueAgendaGroup (id=2144)

= a [0]= Activation

P & ruleName= "Hello World" (id=2151)
P a m= HelloWorldExample$Message (id=55)
P & message= "Hello World" (id=2157)

Figure 20.1. Hello World: fireAllRules Agenda View

The application print outs go to to System out while the debug listener print outs go to
Systemerr.

Example 20.5. HelloWorld: System.out in the Console window

Hel | o Wor| dGoodbye cruel world
Wor | dGoodbye cr uel

595

Examples

Example 20.6. HelloWorld: System.err in the Console window

==>[Acti vati onCreat ed(0): rul e=Hel I o Wor | d;
tuple=[fid:1:1:org. drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
$Message@7cec96]] [Obj ect I nsert ed:
handl e=[fi d: 1: 1: org. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@. 7cec96] ;
obj ect =or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
$Message@7cec96] [Bef or eActi vati onFi red: rul e=Hel I o Worl d;
tupl e=[fid:1:1:org.drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
$Message@7cec96]] ==>[Acti vati onCreat ed(4): rul e=Good Bye;
tupl e=[fid:1:2:0org. drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
$Message@ 7cec96]] [Obj ect Updat ed:
handl e=[fi d: 1: 2: org. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@. 7cec96] ;
ol d_obj ect =or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@L 7cec96;
new_obj ect =or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
$Message@7cec96] [After ActivationFired(0): rule=Hello World][BeforeActivationFired: rule=Good
Bye; tupl e=[fid: 1:2:0org. drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e
$Message@7cec96]] [After ActivationFired(4): rul e=Good Bye]
ed(0): rul e=Hell o Wrl d;

tupl e=[fid: 1:1:org.drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@ 7cec96]] [Obj ect I nserted: handl e=[fi d: 1: 1:
obj ect =or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@ 7cec96]

[BeforeActivationFired: rul e=Hel l o Worl d;
tuple=[fid:1:1:org.drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@. 7cec96] |

==>[Acti vati onCreated(4): rul e=Good Bye;

tupl e=[fid: 1: 2: org. drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@ 7cec96]] [Obj ect Updat ed: handl e=[fi d: 1: 2: ¢
ol d_obj ect =or g. dr ool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@. 7cec96;
new_obj ect =or g. dr ool s. exanpl es. hel | owor | d. Hel | owor | dExanpl e

$Message@7cec96] [After ActivationFired(0): rule=Hello Wrld]

[Bef or eActi vati onFired: rul e=Good Bye;
tupl e=[fid: 1:2: org. drool s. exanpl es. hel | owor | d. Hel | oWor | dExanpl e$Message@. 7cec96]] [After Acti vati onFired(4):

The actual rules are inside the file src/main/resources/org/drool s/ exanpl es/ hel -
| oworl d/ Hel | oWor | d. drl:

Example 20.7. HelloWorld: rule "Hello World"

rule "Hello World" dialect "nmvel" when m: Message(status == Message. HELLO, nessage :
message) then Systemout. println(nessage); modify (m) { nmessage = "Coodbye
cruel world", status = Message. GOODBYE }; end
Wor | d" di al ect
"nmvel "
when m : Message(status == Message. HELLO, nessage : nessage
)
t hen System out. println(nessage);
nmodify (m) { nmessage = "Goodbye cruel
wor | d", status = Message. GOODBYE
¥

596

Examples

The LHS (after when) section of the rule states that it will be activated for each Message object in-
serted into the Rule Runtime whose status is Message. HELLO. Besides that, two variable bindings
are created: the variable nessage is bound to the nessage attribute and the variable mis bound
to the matched Message object itself.

The RHS (after t hen) or consequence part of the rule is written using the MVEL expression lan-
guage, as declared by the rule's attribute di al ect . After printing the content of the bound variable
message to Syst em out, the rule changes the values of the message and st at us attributes of the
Message object bound to m This is done using MVEL's nodi fy statement, which allows you to
apply a block of assignments in one statement, with the engine being automatically notified of the
changes at the end of the block.

It is possible to set a breakpoint into the DRL, on the nodi fy call, and inspect the Agenda view
again during the execution of the rule's consequence. This time we start the execution via "Debug
As" and "Drools application" and not by running a "Java application":

1. Open the class or g. dr ool s. exanpl es. Hel | oWor | d in your Eclipse IDE.
2. Right-click the class and select "Debug as..." and then "Drools application”.

Now we can see that the other rule " Good Bye", which uses the Java dialect, is activated and
placed on the Agenda.

597

Examples

m HelloworldE xample. java "_I' Hello'torld.drl X

“rule "Hello World'™
dialect "nrrel™

when
1 : Message | status == Message.HELLO, message | wessadge)
then
@ dystem.out.println| message):
modify [m) { mwessage = "Goodbyte cruel world™,
> status = Message.FO0DEYE I

end

“rule "Good Bye™
dialect "Jjava’™

when

Message | status == Message.00DEYE, message | messade)
then

dystem.out.println(message):
end

Text Editor | Rete Tree

Console | Tasks ‘E] &genda Yiew 28 Audit View | Global Data View | Rules View | Working Memory YWiew | LRt

= & MAIM[Focus]= BinaryHeapQueueAgendaGroup (id=1530)
[= & [0]= Activation
& ruleMame= "Good Bye"
& message="Goodbyte croel warld"

Figure 20.2. Hello World: rule "Hello World" Agenda View

The "Good Bye" rule, which specifies the "java" dialect, is similar to the "Hello World" rule except
that it matches Message objects whose status is Message. GOODBYE.

Example 20.8. HelloWorld: rule "Good Bye"

rul e "Good Bye"
di al ect "java"
when
Message(status == Message. GOODBYE, nessage : nessage)
t hen
System out. println(nessage);
end

598

Examples

The Java code that instantiates the Ki eRunt i neLogger creates an audit log file that can be loaded
into the Audit view. The Audit view is used in many of the examples to demonstrate the example
execution flow. In the view screen shot below we can see that the object is inserted, which creates
an activation for the "Hello World" rule; the activation is then executed which updates the Message
object causing the "Good Bye" rule to activate; finally the "Good Bye" rule also executes. Selecting
an event in the Audit view highlights the origin event in green; therefore the "Activation created"
event is highlighted in green as the origin of the "Activation executed" event.

Global Data View | Rules View | Working Memory View | Properties

Problems | Javadoc | Declaration | Conscle | Agenda View - IR

[=I ™ Object inserted (1): org.drools.examples, HelloWorldExanplegMessage@ba1 76d
=* Activation created: Rule Hello World m=arg.drools. examples HelloWworldE xample$Message@ba 1 76d(1); message=Hello Warld(1)
= @ Activation executed: Rule Hello World m=org.drools, examples, HelloWorldExamplegMessagei@bs 1 76d(1); message=Hello Warld(1)
= Object updated (1): org.drools. examples HelloWorldE xampledMessagei@bd1 76d

Figure 20.3. Hello World: Audit View

20.3. State Example

This example is implemented in two different versions to demonstrate different ways of imple-
menting the same basic behavior: forward chaining, i.e., the ability the engine has to evaluate,
activate and fire rules in sequence, based on changes on the facts in the Working Memory.

20.3.1. Understanding the State Example

Nanme: State Exanple

Mai n cl ass: org. drool s. exanpl es. st at e. St at eExanpl eUsi ngSal i ence

Modul e: dr ool s-exanpl es

Type: Java application

Rules file: StateExanpl eUsi ngSalience. drl

bj ective: Denpbnstrates basic rule use and Conflict Resolution for rule
firing priority.

Each State class has fields for its name and its current state (see the class
or g. dr ool s. exanpl es. st at e. St at e). The two possible states for each objects are:

* NOTRUN

* FI NI SHED

Example 20.9. State Class

public class State {

599

Examples

public static final int NOTRUN
public static final int FIN SHED

1l
5 &

private final PropertyChangeSupport changes =
new PropertyChangeSupport(this);

private String nane;
private int state;

. setters and getters go here...

Ignoring the Pr oper t yChangeSuppor t , which will be explained later, we see the creation of four
St at e objects named A, B, C and D. Initially their states are set to NOTRUN, which is default for the
used constructor. Each instance is asserted in turn into the Session and then fireAl | Rul es()
is called.

Example 20.10. Salience State: Execution

final State = new St at e(
new State("
= new State("

= new St at e(

final State
final State

o O T 9
I

Q Q@ >

—— e

final State

ksession.insert(
ksessi on. i nsert(
ksession.insert (

o O T Q@
— — — ~—

ksession.insert (
ksession.fireA |l Rul es();

ksession. di spose(); // Stateful rule session nust always be di sposed when fini shed

To execute the application:

1. Open the class or g. dr ool s. exanpl es. st at e. St at eExanpl eUsi ngSal i ence in your Eclipse
IDE.

2. Right-click the class and select "Run as..." and then "Java application"

You will see the following output in the Eclipse console window:

Example 20.11. Salience State: Console Output

A finishedB finishedC finishedD fini shed
i shedB

fini shedC

fi ni shedD

600

Examples

There are four rules in total. First, the Boot st rap rule fires, setting A to state FI NI SHED, which
then causes B to change its state to FI Nl SHED. C and D are both dependent on B, causing a
conflict which is resolved by the salience values. Let's look at the way this was executed.

The best way to understand what is happening is to use the Audit Logging feature to graphically
see the results of each operation. To view the Audit log generated by a run of this example:

1. If the Audit View is not visible, click on "Window" and then select "Show View", then "Other..."
and "Drools" and finally "Audit View".

2. In the "Audit View" click the "Open Log" button and select the file "<drools-examples-dir>/log/
state.log".

After that, the "Audit view" will look like the following screenshot:

Problems | Javadoc | Declaration| Search Console | Bytecode | Tasks History | 4 bt g2 w5 T O

~ Object asserted (1): AINOTRUN]
= Activation created: Rule Bootstrap a=A[NOTRUN](1)
Object asserted (2): BINOTRUN]
Object asserted (3): C[NOTRUN]
Object asserted (4): D[NOTRUN]
= # Activation executed: Rule Bootstrap a=A[NOTRUN]{1)
= Object modified (1): A[FINISHED]
=> Activation created: Rule A to B b=B[NOTRUN](2)
— & Activation executed: Rule A to B b=B[NOTRUN](2)
- Object modified (2): B[FINISHED]
=r Activation created: Rule B to C c=C[NOTRUN](3) CO nfl i Ct
= Activation created: Rule B to D d=D[NOTRUN](4)
—~ & Activation executed: Rule B to C c=C[NOTRUN](3)
Object medified (3): C[FINISHED]
—~ # Activation executed: Rule B to D d=D[NOTRUN](4)
Object modified (4): D[FINISHED]

Figure 20.4. Salience State Example Audit View

Reading the log in the "Audit View", top to bottom, we see every action and the corresponding
changes in the Working Memory. This way we observe that the assertion of the State object A
in the state NOTRUN activates the Boot st r ap rule, while the assertions of the other St at e objects
have no immediate effect.

Example 20.12. Salience State: Rule "Bootstrap”

rul e Bootstrap when a : State(name == "A", state == State. NOTRUN) t hen
Systemout.println(a.getName() + " finished"); a.setState(State.FI NI SHED);end

601

Examples

strap

when a : State(name == "A", state == State. NOTRUN
)

t hen Systemout. println(a.getName() + " finished"
); a.setState(State.FlI Nl SHED

The execution of rule Bootstrap changes the state of A to FI NI SHED, which, in turn, activates rule
"Ato B".

Example 20.13. Salience State: Rule "A to B"

rule "Ato B"
when
State(nane == "A", state == State.FlI N SHED)
b : State(name == "B", state == State. NOTRUN)
then
Systemout. println(b.getName() + " finished")
b.setState(State.FI Nl SHED)
end

The execution of rule "A to B" changes the state of B to FI NI SHED, which activates both, rules "B
to C" and "B to D", placing their Activations onto the Agenda. From this moment on, both rules
may fire and, therefore, they are said to be "in conflict". The conflict resolution strategy allows the
engine's Agenda to decide which rule to fire. As rule "B to C" has the higher salience value (10
versus the default salience value of 0), it fires first, modifying object C to state FI NI SHED. The
Audit view shown above reflects the modification of the St at e object in the rule "A to B", which
results in two activations being in conflict. The Agenda view can also be used to investigate the
state of the Agenda, with debug points being placed in the rules themselves and the Agenda view
opened. The screen shot below shows the breakpoint in the rule "A to B" and the state of the
Agenda with the two conflicting rules.

602

Examples

|I| StakeExamplel)singSalience. java (1:] StateExampleUsingSalience drl 232

rule "4 to ET
when

otate name == "AL", state == State.FINIZHED)

b : State(nsme == "EBE", ztate == 3tate.NOTEUIN)
then
Syvstem.out.printlnib.getlName ()

- b.zet3tate| State.FINISHED)
® end

+ " finished™):

rule "E to C"
galience 10
when
State lname == "E",

state == 3tate.FINIZHED)

C @ Atate(nasane == "CT, gtate == State. .NOTEUN)
then

Svstem.out.printlnic.getiame ()

+ " finished™ j:
c.setitate | State.FINISHED):

end

Texk Editar | Rete Tree

Console | Tasks 'ui' Agenda View X

audit view | Glabal Data Yiew | Rules Yiew | Warking Memaory Yiew

iMalM[focus]= BinarvHeapQueueagendaGroup (id=1392):
=l & [0]= Activation
#- & ruleMame= "B ko "
=l & c=State (id=1408)
& FINISHED=1
& NOTRUN= 0
- o changes= PropertyChangesupport (id=1433)
- @ name="C"
E state=0
=l & [1]= Activation
+- & ruleMame= "B ko D"
=l & c=State {id=1406)
& FINISHED= 1
& NOTRUN= D
= o changes= PropertyvChangeSupport (id=1433)
- @ name="C"
B sktate=0

Figure 20.5. State Example Agenda View

603

Examples

Example 20.14. Salience State: Rule "B to C"

rule "Bto C'
sal i ence 10
when
State(nane == "B", state == State.Fl Nl SHED)
c : State(name == "C', state == State. NOTRUN)
then
Systemout.println(c.getNanme() + " finished");
c.setState(State.FI N SHED);
end

Rule "B to D" fires last, modifying object D to state FI NI SHED.

Example 20.15. Salience State: Rule "B to D"

rule "Bto D'
when
State(nane == "B", state == State.FlI N SHED)
d : State(name == "D', state == State. NOTRUN)
t hen
System out. println(d.getName() + " finished");
d.setState(State.FI N SHED);
end

There are no more rules to execute and so the engine stops.

Another notable concept in this example is the use of dynamic facts, based on Pr oper t yChange-
Li st ener objects. As described in the documentation, in order for the engine to see and react to
changes of fact properties, the application must tell the engine that changes occurred. This can be
done explicitly in the rules by using the nodi f y statement, or implicitly by letting the engine know
that the facts implement Propert yChangeSupport as defined by the JavaBeans specification.
This example demonstrates how to use Propert yChangeSupport to avoid the need for explicit
modi fy statements in the rules. To make use of this feature, ensure that your facts implement
Pr oper t yChangeSupport, the same way the class or g. dr ool s. exanpl e. St at e does, and use
the following code in the rules file to configure the engine to listen for property changes on those

facts:

Example 20.16. Declaring a Dynamic Fact

decl are type State
@r oper t yChangeSuppor t
end

When using Pr oper t yChangelLi st ener objects, each setter must implement a little extra code for
the notification. Here is the setter for st at e in the class or g. dr ool s. exanpl es:

604

Examples

Example 20.17. Setter Example with PropertyChangeSupport

public void setState(final int newState) {
int oldState = this.state;
this.state = newState;
t hi s. changes. firePropertyChange("state",
ol dSt at e,
newState);

There are another class in this example: St at eExanpl eUsi ngAgendaG oup. It executes from A to
B to C to D, as just shown, but St at eExanpl eUsi ngAgendaG oup uses agenda-groups to control
the rule conflict and which one fires first.

Agenda groups are a way to partition the Agenda into groups and to control which groups can
execute. By default, all rules are in the agenda group "MAIN". The "agenda-group" attribute lets
you specify a different agenda group for the rule. Initially, a Working Memory has its focus on the
Agenda group "MAIN". A group's rules will only fire when the group receives the focus. This can be
achieved either ny using the method by set Focus() or the rule attribute aut o- f ocus. "auto-focus"
means that the rule automatically sets the focus to its agenda group when the rule is matched and
activated. It is this "auto-focus" that enables rule "B to C" to fire before "B to D".

Example 20.18. Agenda Group State Example: Rule "B to C"

rule "Bto C'
agenda-group "B to C'
aut o-focus true
when
State(nane == "B", state == State.FlI N SHED)
c : State(name == "C', state == State. NOTRUN)
t hen
Systemout. println(c.getName() + " finished");
c.setState(State.FIN SHED);
kcont ext . get Know edgeRunti me() . get Agenda() . get AgendaGroup("B to D').set Focus();
end

The rule "B to C" calls set Focus() on the agenda group "B to D", allowing its active rules to fire,
which allows the rule "B to D" to fire.

Example 20.19. Agenda Group State Example: Rule "B to D"

rule "Bto D'
agenda-group "B to D'
when
State(nane == "B", state == State.FlI N SHED)
d: State(name == "D', state == State. NOTRUN)
t hen
Systemout. println(d.getNarme() + " finished");

605

Examples

d.setState(State.FIN SHED);
end

20.4. Fibonacci Example

Name: Fi bonacci
Mai n cl ass: org. drool s. exanpl es. fi bonacci . Fi bonacci Exanpl e
Modul e: dr ool s- exanpl es
Type: Java application
Rul es file: Fibonacci.drl
oj ective: Denpbnstrates Recursion,
the CE not and cross product matching

The Fibonacci Numbers (see http://en.wikipedia.org/wiki/Fibonacci_number) discovered by
Leonardo of Pisa (see http://en.wikipedia.org/wiki/Fibonacci) is a sequence that starts with 0 and
1. The next Fibonacci number is obtained by adding the two preceding Fibonacci numbers. The
Fibonacci sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946,... The Fibonacci Example demonstrates recursion and conflict
resolution with salience values.

The single fact class Fi bonacci is used in this example. It has two fields, sequence and value.
The sequence field is used to indicate the position of the object in the Fibonacci number sequence.
The value field shows the value of that Fibonacci object for that sequence position, using -1 to
indicate a value that still needs to be computed.

Example 20.20. Fibonacci Class

public static class Fibonacci {
private int sequence;
private |ong val ue;
public Fibonacci(final int sequence) {

thi s. sequence = sequence;
this.value = -1;

. setters and getters go here...

Execute the example:

1. Open the class or g. dr ool s. exanpl es. fi bonacci . Fi bonacci Exanpl e in your Eclipse IDE.
2. Right-click the class and select "Run as..." and then "Java application"

Eclipse shows the following output in its console window (with "...snip..." indicating lines that were
removed to save space):

606

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci

Examples

Example 20.21. Fibonacci Example: Console Output

recurse for 50recurse for 49recurse for 48recurse for 47...snip...recurse for 5recurse for
4recurse for 3recurse for 21 == 12 == 13 == 24 == 35 == 56 == 8...snip...47 == 297121507348
== 480752697649 == 777874204950 == 12586269025
50recurse for

49recurse for

48recurse for

a7

...snip...recurse for

5recurse for

4recurse for

3recurse for

21 ==

12 ==

13 ==

24 ==

35 ==

56 ==

8

...snip...47 ==

297121507348 ==

480752697649 ==

777874204950 ==

To kick this off from Java we only insert a single Fibonacci object, with a sequence field of 50.
A recursive rule is then used to insert the other 49 Fi bonacci objects. This example doesn't
use PropertyChangeSupport . It uses the MVEL dialect, which means we can use the nodi fy
keyword, which allows a block setter action which also notifies the engine of changes.

Example 20.22. Fibonacci Example: Execution

ksession.insert(new Fi bonacci(50))
ksession.fireA | Rul es();

The rule Recurse is very simple. It matches each asserted Fi bonacci object with a value of -1,
creating and asserting a new Fi bonacci object with a sequence of one less than the currently
matched object. Each time a Fibonacci object is added while the one with a sequence field equal
to 1 does not exist, the rule re-matches and fires again. The not conditional element is used to
stop the rule's matching once we have all 50 Fibonacci objects in memory. The rule also has a
salience value, because we need to have all 50 Fi bonacci objects asserted before we execute
the Bootstrap rule.

Example 20.23. Fibonacci Example: Rule "Recurse"

rul e Recurse sal i ence 10 when f : Fibonacci (value == -1) not (Fi bonacc
(sequence == 1)) t hen insert(new Fibonacci(f.sequence - 1));
Systemout.println("recurse for " + f.sequence);end

607

Examples

curse sal i ence

10

when f : Fibonacci (value == -1

) not (Fibonacci (sequence == 1)

)

t hen insert(new Fibonacci(f.sequence - 1)

) Systemout.printin("recurse for " + f.sequence

The Audit view shows the original assertion of the Fi bonacci object with a sequence field of 50,
done from Java code. From there on, the Audit view shows the continual recursion of the rule,
where each asserted Fi bonacci object causes the Recurse rule to become activated and to fire
again.

Problems | Javadoc | Declaration | Search | Console | Ervor Log | History '-" Audit Wiew X Properties

Chject asserted (1): FibonacciiS0/-1)
= Ackivation created: Rule Recurse F=Fibonacci(S00-1301)
Activation executed: Rule Recurse F=Fibonacci{50/-131)
= Ohject asserted (2 Fibonacoi{49/-1)
=S¢ Ackivation created: Rule Recurse F=Fibonaccif43,-1102)
=0 B fictivation executed: Rule Recurse F=Fibonacci(49y-13(2)
= Ohject asserted (3 Fibonacoi(4a/-1)
=r fckivation created: Rule Recurse F=Fibonacci{4d/-11(3)
& Activation executed: Rule Recurse F=Fibonacci{48/-13(3)
= Ohject asserted (4); Fibonacoi{47/-1)
= Activation created: Rule Recurse F=Fibonaccif47/-13{4)
& Activation executed: Rule Recurse F=Fibonacci{47/-1(4)
= Cbject asserted (50 Fibonacci{46/-1)
=r Ackivation created: Rule Recurse F=Fibonacci{46,-13(5)
—|-- 4 Activation execubed: Rule Recurse F=Fibonacci{46)-1)(5)
= Chject asserted (&) Fibonacoi(45/-1)
=r Ackivation created: Rule Recurse F=Fibonacci{45,-1(&)
= 4 Activation executed: Rule Recurse F=Fibonacci{45)-1)(6)
= Chject asserted (7)) Fibonacoi{44/-1)
= Ackivation created: Rule Recurse F=Fibonacci{44,-13(7)

Figure 20.6. Fibonacci Example: "Recurse" Audit View 1

When a Fi bonacci object with a sequence field of 2 is asserted the "Bootstrap" rule is matched
and activated along with the "Recurse" rule. Note the multi-restriction on field sequence, testing
for equality with 1 or 2.

Example 20.24. Fibonacci Example: Rule "Bootstrap”

rul e Bootstrap when f : Fibonacci(sequence == 1 || == 2, value == -1) // nmulti-
restriction t hen modify (f){ value = 1 }; Systemout.println(f.sequence
+ " =" + f.value);end

608

Examples

strap
when f : Fibonacci(sequence == 1 || == 2, value == -1) // multi-
restriction then
modify (f){ value = 1
}; Systemout.println(f.sequence + " ==" + f. value

)i

At this point the Agenda looks as shown below. However, the "Bootstrap” rule does not fire be-
cause the "Recurse" rule has a higher salience.

‘i' Agenda Yiew X Global Data Wiew Rules View Working Memory Yigw

= & MAIN[focus]= BinaryHeapQueusdgendaroup {id=1402):
= & [0]= Activation
& ruleMame= "Recursg"
& [= FibonacciExample$Fibonacci (id=1413)
= & [1]= &ckivation
& ruleMame= "Bootstrap"
& F=FibonacciExamplefFibonacci (id=1413)

-

Figure 20.7. Fibonacci Example: "Recurse" Agenda View 1

When a Fi bonacci object with a sequence of 1 is asserted the Bootstrap rule is matched again,
causing two activations for this rule. Note that the "Recurse” rule does not match and activate

because the not conditional element stops the rule’'s matching as soon as a Fi bonacci object
with a sequence of 1 exists.

609

Examples

"_I' Agenda YWiew X Global Data Yiew Rules View Working Mernory Yiew

= & MAIN[focus]= BinaryHeapQueuehgendaGroup (id=1402)
= & [0]= Activation

& ruleMame= "Bootstrap"

& [=FibonaccExample$Fibonacc (id=1445)

[1]= Activation

& ruleMame= "Bootskrap"

& f=FibonaccExamplefFibonacc (id=1413)

E--E

BB

Figure 20.8. Fibonacci Example: "Recurse" Agenda View 2

Once we have two Fi bonacci objects with values not equal to -1 the "Calculate” rule is able to
match. It was the "Bootstrap” rule that set the objects with sequence 1 and 2 to values of 1. At
this point we have 50 Fibonacci objects in the Working Memory. Now we need to select a suitable
triple to calculate each of their values in turn. Using three Fibonacci patterns in a rule without
field constraints to confine the possible cross products would result in 50x49x48 possible combi-
nations, leading to about 125,000 possible rule firings, most of them incorrect. The "Calculate"
rule uses field constraints to correctly constraint the thee Fibonacci patterns in the correct order;
this technique is called cross product matching. The first pattern finds any Fibonacci with a value !
= -1 and binds both the pattern and the field. The second Fibonacci does this, too, but it adds an
additional field constraint to ensure that its sequence is greater by one than the Fibonacci bound
to f 1. When this rule fires for the first time, we know that only sequences 1 and 2 have values
of 1, and the two constraints ensure that f 1 references sequence 1 and f 2 references sequence
2. The final pattern finds the Fibonacci with a value equal to -1 and with a sequence one greater
than f 2. At this point, we have three Fi bonacci objects correctly selected from the available cross
products, and we can calculate the value for the third Fi bonacci object that's bound to f 3.

Example 20.25. Fibonacci Example: Rule "Calculate"

rule Calculate when /1 Bind f1 and sl f1 : Fibonacci(sl : sequence, value !=
-1) /1 Bind f2 and v2; refer to bound variable sl f2 : Fibonacci (sequence ==

610

Examples

(s1 + 1), v2 : value !=-1) // Bind f3 and s3; alternative reference of f2.sequence
f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1) t hen

/1 Note the various referencing techniques. modify (f3) { value = f1l.value +

v2 }; Systemout.println(s3 +" ==" + f3.value);end

cul ate

when /1 Bind f1 and

sl f1 : Fibonacci(sl : sequence, value != -1

) /1 Bind f2 and v2; refer to bound variable

sl f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1

) // Bind f3 and s3; alternative reference of

f2. sequence f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)

t hen /1 Note the various referencing

t echni ques. modify (f3) { value = f1.value + v2

b Systemout.println(s3 +" ==" + f3.value

D

The nodi fy statement updated the value of the Fi bonacci object bound to f 3. This means we
now have another new Fibonacci object with a value not equal to -1, which allows the "Calculate"
rule to rematch and calculate the next Fibonacci number. The Audit view below shows how the
firing of the last "Bootstrap" modifies the Fi bonacci object, enabling the "Calculate" rule to match,
which then modifies another Fibonacci object allowing the "Calculate” rule to match again. This
continues till the value is set for all Fi bonacci objects.

611

Examples

Problems | Javadoc | Declaration | Search | Console | Error Log | History '-i,' Audic View

Activation cancelled

Activation cancelled

Activation cancelled

Activation cancelled

LTI T T T T A TR A TR N TR R TR

Activation cancelled:
Activation cancelled:

Activation cancelled:

Activation cancelled:
Activation cancelled:
Activation cancelled:

Activation cancelled:
Activation cancelled:
Activation cancelled:

: Rule Recurse F=Fibonacci{33/-1)(13)

Rule Recurse F=Fibonacci(4/-1{47)
Rule Recurse F=Fibonacci(37/-1)(14)

: Rule Recurse F=Fibonaccif2z/-1)(29)

Rule Recurse F=Fibonacci{S0/-13(1}

: Rule Recurse F=Fibonacci{10/-1)(41}
Activation cancelled:

Rule Recurse F=Fibonacci{19/-11(32)
Rule Recurse F=Fibonaccif17/-1){34)
Rule Recurse F=Fibonacci{3/-13(48)

Rule Recurse F=Fibonacci{35/-13(16)

1 Rule Recurse F=FibonacciiZ0/-13(31)

Rule Recurse F=Fibonacci(g/-1){43)
Rule Recurse F=Fibonacci(z1/-13(300
Rule Recurse F=Fibonacci{36/-1315)

Properties

= 4 Activation executed: Rule Bootstrap F=Fibonacci(z/-1){49)
Object modified (49): Fibonacci(z/1)
= Ackivation created: Rule Calculate F2=Fibonaccifzf13(49); F1=Fibonacci{1/13{50); s1=1(50); s3=3(458); F3=Fibonacci(3/-13{45)
—|-- 4 Activation executed: Rule Caloulate F2=Fibonaccit2)1(49); Fi=Fibonacci1/1)(50); s1=1({50) s3=3(43); F3=Fibonacci(3/-1){43)

= Cbject modified {48): Fibonacci(3/2)

= Activation created: Rule Calculate F2=Fibonacci{3/23(48); Fl=Fibonacc(2/1)(49); s1=2(49); s3=4(47); F3=Fibonacci(4/-11{47)

—|- 4 Activation executed: Rule Calculate F2=Fibonaccif3/2)045); F1=Fibonacci{2/1)(49); s1=2(49); s3=4(47); F3=Fibonacci(4/-1)(47)
Ohject madified (47): Fibonacci(4/3)
= Activation created: Rule Calculate F2=Fibonacci{4/3)47); F1=Fibonacci{3/2){48); s1=3(48); s3=5(48); F3=Fibonacci(S/-1){4&)
= 4 Activation executed: Rule Calculate F2=Fibonaccit4)3(47); Fl=Fibonacci3/2)(45); s1=3(48); s3=5(48); f3=Fbonacci{S/-1){46)
Ohbject modified (46): Fibonacci(s/5)
= Ackivation created: Rule Calculate F2=FibonaccifS/5)(4a); F1=Fibonacci{4/3)(47); s1=4(47); s3=0(45); F3=Fibonacci(g/-13{45)
—|-- 4 Activation executed: Rule Caloulate F2=FibonaccilS)5(46); Fl=Fibonacci{4/3(47); s1=4(47); s3=6(45); Fa=Fibonacci(a/-1){45)
Object modified (45): Fibonacci(6/a)

Figure 20.9. Fibonacci Example: "Bootstrap” Audit View

20.5. Banking Tutorial

Name: Banki ngTut ori al

Mai n cl ass: org. drool s. exanpl es. banki ng. Banki ngExanpl esApp. j ava

Modul e: dr ool s- exanpl es

Type: Java application

Rules file: org.drools. exanpl es. banki ng. *. drl

bj ective: Denpbnstrate pattern natching, basic sorting and cal cul ation
rul es.

This tutorial demonstrates the process of developing a complete personal banking application to
handle credits and debits on multiple accounts. It uses a set of design patterns that have been
created for the process.

The class Rul eRunner is a simple harness to execute one or more DRL files against a set of data.
It compiles the Packages and creates the Knowledge Base for each execution, allowing us to
easily execute each scenario and inspect the outputs. In reality this is not a good solution for a

612

Examples

production system, where the Knowledge Base should be built just once and cached, but for the
purposes of this tutorial it shall suffice.

Example 20.26. Banking Tutorial: RuleRunner

public class Rul eRunner {

publi ¢ Rul eRunner () {
}

public void runRul es(String[] rules,
Object[] facts) throws Exception {

Know edgeBase kbase = Know edgeBaseFact ory. newkKnow edgeBase() ;
Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newKnowl edgeBui | der () ;

for (int i =0; i <rules.length; i++) {
String ruleFile = rules[i];
Systemout.println("Loading file: " + ruleFile);

kbui | der . add(Resour ceFact ory. newCd assPat hResource(rul eFil e,
Rul eRunner. cl ass),
Resour ceType. DRL);

Col | ecti on<kKnow edgePackage> pkgs = kbui | der. get Know edgePackages() ;
kbase. addKnow edgePackages(pkgs);
St at ef ul Know edgeSessi on ksessi on = kbase. newSt at ef ul Know edgeSessi on() ;

for (int i =0; i <facts.length; i++) {
Obj ect fact = facts[i];
Systemout.println("lInserting fact: " + fact);

ksession.insert(fact);

ksession.fireAl |l Rul es();

The first of our sample Java classes loads and executes a single DRL file, Exanpl e. dr |, but
without inserting any data.

Example 20.27. Banking Tutorial : Java Examplel

public class Exanplel {
public static void main(String[] args) throws Exception {
new Rul eRunner (). runRules(new String[] { "Exanplel.drl" },
new Object[0]);

613

Examples

The first simple rule to execute has a single eval condition that will always be true, so that this
rule will match and fire, once, after the start.

Example 20.28. Banking Tutorial: Rule in Examplel.drl

rule "Rule 01"
when
eval (1==1)
then
Systemout.println("Rule 01 Works");
end

The output for the rule is below, showing that the rule matches and executes the single print
statement.

Example 20.29. Banking Tutorial: Output of Examplel.java

Loading file: Exanplel.drlRule 01 Wrks
Exanpl el. drl Rul e 01

The next step is to assert some simple facts and print them out.

Example 20.30. Banking Tutorial: Java Example2

public class Exanpl e2 {
public static void main(String[] args) throws Exception {
Nunber[] nunbers = new Nunber[] {wap(3), wap(l), wap(4), wap(l), wap(5)};
new Rul eRunner (). runRul es(new String[] { "Exanple2.drl" },
nunbers);

}

private static Integer wap(int i) {
return new I nteger(i);

}

This doesn't use any specific facts but instead asserts a set of j ava. | ang. | nt eger objects. This
is not considered "best practice" as a number is not a useful fact, but we use it here to demonstrate
basic techniques before more complexity is added.

Now we will create a simple rule to print out these numbers.

Example 20.31. Banking Tutorial: Rule in Example2.drl

rule "Rule 02"

614

Examples

when
Number ($i nt Val ue : intValue)
then
Systemout. println("Nunmber found with value: " + $intValue);
end

Once again, this rule does nothing special. It identifies any facts that are Nunmber objects and prints
out the values. Notice the use of the abstract class Nunber : we inserted I nt eger objects but we
now look for any kind of number. The pattern matching engine is able to match interfaces and
superclasses of asserted objects.

The output shows the DRL being loaded, the facts inserted and then the matched and fired rules.
We can see that each inserted number is matched and fired and thus printed.

Example 20.32. Banking Tutorial: Output of Example2.java

Loading file: Exanple2.drllnserting fact: 3lnserting fact: 1llnserting fact: 4lnserting fact:
linserting fact: 5Nunber found with value: 5Nunber found with value: 1Nunmber found with val ue:
4Nunber found with value: 1Nunber found with value: 3

Exanpl e2. drl I nserting fact:

3lnserting fact:

linserting fact:

4l nserting fact:

llinserting fact:

S5Nunber found with val ue:

S5Nunber found with val ue:

INunmber found with val ue:

4Nunber found with val ue:

INumber found w th val ue:

There are certainly many better ways to sort numbers than using rules, but since we will need to
apply some cashflows in date order when we start looking at banking rules we'll develop simple
rule based sorting technique.

Example 20.33. Banking Tutorial: Example3.java

public class Exanple3 {
public static void main(String[] args) throws Exception {
Nunber[] nunbers = new Nunber[] {wap(3), wap(l), wap(4), wap(l), wap(5)};
new Rul eRunner (). runRules(new String[] { "Exanple3.drl" },
nunbers);

}

private static Integer wap(int i) {
return new I nteger(i);

}

Again we insert our | nt eger objects, but this time the rule is slightly different:

615

Examples

Example 20.34. Banking Tutorial: Rule in Example3.drl

rule "Rule 03"
when
$nunber : Nunmber()
not Nunmber (intValue < $nunber.intVal ue)
t hen
System out. println("Nunber found with value: " + $nunber.intValue());
retract ($nunber);
end

The first line of the rule identifies a Nunber and extracts the value. The second line ensures that
there does not exist a smaller number than the one found by the first pattern. We might expect
to match only one number - the smallest in the set. However, the retraction of the number after it
has been printed means that the smallest number has been removed, revealing the next smallest
number, and so on.

The resulting output shows that the numbers are now sorted numerically.

Example 20.35. Banking Tutorial: Output of Example3.java

Loading file: Exanple3.drllnserting fact: 3lnserting fact: 1llnserting fact: 4lnserting fact:
linserting fact: 5Nunber found with value: 1Nunber found with value: 1Nunmber found with val ue:
3Nunber found with value: 4Nunber found with value: 5

Exanpl e3.drl I nserting fact:

3lnserting fact:

linserting fact:

4l nserting fact:

linserting fact:

S5Nunber found with val ue:

1Nunber found with val ue:

INunber found with val ue:

3Nunber found with val ue:

4Nunber found w th val ue:

We are ready to start moving towards our personal accounting rules. The first step is to create
a Cashf | owobject.

Example 20.36. Banking Tutorial: Class Cashflow

public class Cashflow {
private Date date;
private doubl e anount;

public Cashflow() {
}

public Cashfl ow(Date date, double anount) {
this.date = date;

616

Examples

t hi s. anbunt = anount;

public Date getDate() {
return date;

public void setDate(Date date) {
this.date = date;

publ i c doubl e get Amount () {
return anmount;

public void set Amount (doubl e anount) {
t hi s. anbunt = anount;

public String toString() {
return "Cashfl owf date=" + date + ",anount=" + anount + "]";

Class Cashf | owhas two simple attributes, a date and an amount. (Note that using the type doubl e
for monetary units is generally not a good idea because floating point numbers cannot represent
most numbers accurately.) There is also an overloaded constructor to set the values, and a method
toString to print a cashflow. The Java code of Exanpl e4. j ava inserts five Cashflow objects,
with varying dates and amounts.

Example 20.37. Banking Tutorial: Example4.java

public class Exanpl e4 {
public static void main(String[] args) throws Exception {
Obj ect[] cashflows = {
new Cashfl ow(new Si npl eDat e("01/01/2007"), 300.00),
new Cashfl ow(new Si npl eDat e(" 05/ 01/2007"), 100.00),
new Cashfl ow(new Si npl eDat e("11/01/2007"), 500.00),
new Cashfl ow(new Si npl eDat e("07/01/2007"), 800.00),
new Cashfl ow(new Si npl eDat e(" 02/ 01/2007"), 400.00),

new Rul eRunner (). runRules(new String[] { "Exanple4.drl" },
cashflows);

The convenience class Si npl eDat e extends j ava. uti | . Dat e, providing a constructor taking a
String as input and defining a date format. The code is listed below

617

Examples

Example 20.38. Banking Tutorial: Class SimpleDate

public class SinpleDate extends Date {
private static final SinpleDateFormat format = new Si npl eDat eFor mat ("dd/ MM yyyy");

public SinpleDate(String datestr) throws Exception {
set Ti me(fornat. parse(datestr).getTime());

Now, let's look at Exanpl e4. dr| to see how we print the sorted Cashf | ow objects:

Example 20.39. Banking Tutorial: Rule in Example4.drl

rule "Rul e 04"
when
$cashflow : Cashflow($date : date, $ampunt : amount)
not Cashflow date < $date)
then
System out. println("Cashflow "+$date+" :: "+$anount);
retract ($cashfl ow);
end

Here, we identify a Cashf | owand extract the date and the amount. In the second line of the rule
we ensure that there is no Cashflow with an earlier date than the one found. In the consequence,
we print the Cashf | ow that satisfies the rule and then retract it, making way for the next earliest

Cashf | ow. So, the output we generate is:

Example 20.40. Banking Tutorial: Output of Example4.java

Loadi ng file: Exanpl e4. drl I nserting fact: Cashf | owf dat e=Mon Jan 01 00: 00: 00
Gur 2007, anopunt =300. 0] I nserti ng fact: Cashf | ow dat e=Fri Jan 05 00: 00: 00
GMr 2007, anpunt =100. O] I nserti ng fact: Cashf | ow dat e=Thu Jan 11 00: 00: 00
GVIT 2007, anount =500. 0] I nserti ng fact: Cashf | owf dat e=Sun Jan 07 00: 00: 00
GVIr 2007, amount =800. 0] I nserti ng fact: Cashf | owf dat e=Tue Jan 02 00: 00: 00 GVIT
2007, anpunt =400. 0] Cashfl ow. Mon Jan 01 00: 00: 00 GMI 2007 :: 300.0Cashfl ow. Tue Jan 02 00: 00: 00
GMI' 2007 :: 400.0Cashflow:. Fri Jan 05 00:00: 00 GMI 2007 :: 100.0Cashflow. Sun Jan 07 00: 00: 00

GMI 2007 :: 800.0Cashflow. Thu Jan 11 00:00: 00 GMIr 2007 :: 500.0
Exanpl e4.drl I nserting fact: Cashfl ow date=Mon Jan 01 00: 00: 00 GMVI'

2007, anpunt =300. O] I nserting fact: Cashfl ow date=Fri Jan 05 00: 00: 00 GV
2007, anount =100. 0] I nserting fact: Cashflow date=Thu Jan 11 00: 00: 00 GV
2007, anount =500. 0] I nserting fact: Cashflow date=Sun Jan 07 00: 00: 00 GV
2007, anount =800. 0] I nserting fact: Cashflow date=Tue Jan 02 00: 00: 00 GVIT
2007, anpunt =400. 0] Cashfl ow. Mon Jan 01 00: 00: 00 GMI' 2007 ::

300. 0Cashfl ow. Tue Jan 02 00: 00: 00 GMI 2007 ::

400. 0Cashflow. Fri Jan 05 00: 00: 00 GMI 2007 ::

100. 0Cashfl ow. Sun Jan 07 00: 00: 00 GMTI 2007 ::

800. 0Cashfl ow. Thu Jan 11 00: 00: 00 GMI 2007 ::

618

Examples

Next, we extend our Cashf | ow, resulting in a TypedCashf | ow which can be a credit or a debit
operation. (Normally, we would just add this to the Cashf | owtype, but we use extension to keep
the previous version of the class intact.)

Example 20.41. Banking Tutorial: Class TypedCashflow

public class TypedCashfl ow extends Cashfl ow {
public static final int CREDIT = O;
public static final int DEBIT = 1;

private int type;

public TypedCashflow() {
}

public TypedCashfl ow(Date date, int type, double amunt) {
super (date, amount);
this.type = type;

public int getType() {
return type;

public void setType(int type) {
this.type = type;

public String toString() {
return "TypedCashfl ow date=" + getDate() +
",type=" + (type == CREDIT ? "Credit" : "Debit") +
",amount =" + getAnmount() + "]";

There are lots of ways to improve this code, but for the sake of the example this will do.

Now let's create Example5, a class for running our code.

Example 20.42. Banking Tutorial: Example5.java

public class Exanple5 {
public static void main(String[] args) throws Exception {
Obj ect[] cashflows = {

new TypedCashfl owm new Si npl eDat e("01/ 01/ 2007"),
TypedCashf | ow. CREDI T, 300. 00),

new TypedCashfl ow(new Si npl eDat e(" 05/ 01/ 2007"),
TypedCashfl ow. CREDI T, 100. 00),

new TypedCashfl ow(new Si npl eDat e("11/01/2007"),
TypedCashf | ow. CREDI T, 500. 00),

new TypedCashfl owm new Si npl eDat e("07/01/2007"),
TypedCashf | ow. DEBI T, 800. 00),

new TypedCashfl owm new Si npl eDat e(" 02/ 01/ 2007"),

619

Examples

TypedCashfl ow. DEBI T, 400. 00),
8

new Rul eRunner (). runRul es(new String[] { "Exanpleb.drl" },
cashflows);

Here, we simply create a set of Cashf | ow objects which are either credit or debit operations. We
supply them and Exanpl e5. dr| to the RuleEngine.

Now, let’'s look at a rule printing the sorted Cashf | ow objects.

Example 20.43. Banking Tutorial: Rule in Example5.drl

rule "Rule 05"
when
$cashflow : TypedCashfl ow($date : date,
$anount : anount,
type == TypedCashflow. CREDI T)
not TypedCashflow(date < $date,
type == TypedCashflow. CREDI T)
then
Systemout.println("Credit: "+$date+" :: "+$anount);
retract ($cashfl ow);
end

Here, we identify a Cashf | ow fact with a type of CREDI T and extract the date and the amount. In
the second line of the rule we ensure that there is no Cashf | ow of the same type with an earlier
date than the one found. In the consequence, we print the cashflow satisfying the patterns and
then retract it, making way for the next earliest cashflow of type CREDI T.

So, the output we generate is

Example 20.44. Banking Tutorial: Output of Example5.java

Loadi ng file: Exanpleb.drl

Inserting fact: TypedCashfl owf date=Mon Jan 01 00: 00: 00 GMT
2007, t ype=Credi t, amount =300. 0]

Inserting fact: TypedCashfl owf date=Fri Jan 05 00: 00: 00 GMI
2007, t ype=Credi t, anobunt =100. 0]

Inserting fact: TypedCashfl owf date=Thu Jan 11 00: 00: 00 GMI
2007, t ype=Credi t, amount =500. 0]

Inserting fact: TypedCashfl owf date=Sun Jan 07 00: 00: 00 GMI
2007, t ype=Debi t , ambunt =800. 0]

Inserting fact: TypedCashfl owf dat e=Tue Jan 02 00: 00: 00 GMI
2007, t ype=Debi t , anount =400. 0]

Credit: Mon Jan 01 00:00: 00 GMr 2007 :: 300.0

Credit: Fri Jan 05 00:00: 00 GMI 2007 :: 100.0

620

Examples

Credit: Thu Jan 11 00: 00: 00 GVI 2007 :: 500.0

Continuing our banking exercise, we are now going to process both credits and debits on two bank
accounts, calculating the account balance. In order to do this, we create two separate Account
objects and inject them into the Cashf | ows objects before passing them to the Rule Engine. The
reason for this is to provide easy access to the correct account without having to resort to helper
classes. Let's take a look at the Account class first. This is a simple Java object with an account
number and balance:

Example 20.45. Banking Tutorial: Class Account

public class Account {
private | ong account No;
private doubl e bal ance = 0;

public Account () {
}

public Account (long accountNo) {
t hi s. account No = account No;

}

public I ong get Account No() {
return account No;

}

public void set Account No(l ong account No) {
t hi s. account No = account No;

}

publ i c doubl e getBal ance() {
return bal ance;

}

public void setBal ance(doubl e bal ance) {
t hi s. bal ance = bal ance;

}

public String toString() {
return "Account[" + "accountNo=" + accountNo + ", bal ance=" + balance + "]";

}

Now let's extend our TypedCashf | ow, resulting in Al | ocat edCashf | ow, to include an Account
reference.

Example 20.46. Banking Tutorial: Class AllocatedCashflow

public class AllocatedCashfl ow extends TypedCashfl ow {
private Account account;

621

Examples

public Al ocatedCashflowm) {
}

public AllocatedCashfl om Account account, Date date, int type, double anpunt) {
super(date, type, anount);
t hi s. account = account;

public Account getAccount () {
return account;

public void setAccount (Account account) {
t hi s.account = account;

public String toString() {
return "Al |l ocatedCashflow" +
"account =" + account +
",date=" + getDate() +
",type=" + (getType() == CREDIT ? "Credit" : "Debit") +
",anpunt =" + getAnount () + "]";

The Java code of Exanpl e5. j ava creates two Account objects and passes one of them into each
cashflow, in the constructor call.

Example 20.47. Banking Tutorial: Example5.java

public class Exanpl e6 {
public static void nmain(String[] args) throws Exception {
Account accl = new Account(1);
Account acc2 = new Account (2);

Obj ect[] cashflows = {

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 01/ 01/ 2007"),
TypedCashf | ow. CREDI T, 300. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 05/ 02/ 2007"),
TypedCashf | ow. CREDI T, 100. 00),

new Al | ocat edCashf| ow(acc2, new Si npl eDat e(" 11/ 03/ 2007"),
TypedCashf | ow. CREDI T, 500. 00),

new Al | ocat edCashfl om accl, new Si npl eDat e(" 07/ 02/ 2007"),
TypedCashfl ow. DEBI T, 800. 00),

new Al | ocat edCashfl ow(acc2, new Si npl eDat e(" 02/ 03/ 2007"),
TypedCashfl ow. DEBI T, 400. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 01/ 04/ 2007"),
TypedCashf | ow. CREDI T, 200. 00),

new Al | ocat edCashfl ow(accl, new Si npl eDat e(" 05/ 04/ 2007"),
TypedCashf | ow. CREDI T, 300. 00),

new Al | ocat edCashfl owm acc2, new Si npl eDat e(" 11/ 05/ 2007"),
TypedCashfl ow. CREDI T, 700. 00),

new Al | ocat edCashfl ow accl, new Si npl eDat e(" 07/ 05/ 2007"),
TypedCashfl ow. DEBI T, 900. 00),

new Al | ocat edCashfl ow(acc2, new Si npl eDat e(" 02/ 05/ 2007"),
TypedCashfl ow. DEBI T, 100. 00)

622

Examples

¥

new Rul eRunner (). runRul es(new String[] { "Exanple6.drl" },
cashflows);

Now, let’s look at the rule in Exanpl e6. dr| to see how we apply each cashflow in date order and
calculate and print the balance.

Example 20.48. Banking Tutorial: Rule in Example6.drl

rule "Rule 06 - Credit" when $cashfl ow : AllocatedCashfl ow($account : account,
$date : date,
$anmount : anount, type == TypedCashfl ow. CREDI T) not
Al | ocat edCashfl ow(account == $account, date < $date) then Systemout.println("Credit:
" + $date + " :: " + $anmount); $account . set Bal ance($account . get Bal ance() +$anmpunt) ;
System out. println("Account: " + $account.get AccountNo() + "
- new bal ance: " + $account. getBal ance()); retract ($cashflow);endrule "Rule
06 - Debit" when $cashflow : Al l ocatedCashfl om $account : account,
$date : date, $anount : anount,
type == TypedCashfl ow. DEBI T) not All ocatedCashfl owm account == $account, date <
$dat e) t hen Systemout.println("Debit: " + $date + " :: " + $anount);
$account . set Bal ance($account. get Bal ance() - $amunt); System out . println("Account: " +
$account . get Account No() + " - new bal ance: " + $account. getBal ance());

retract ($cashflow); end

when $cashflow : All ocat edCashfl owm $account

account , $date :

dat e, $anmount

anmount , type == TypedCashfl ow. CREDI T

) not All ocatedCashfl owm account == $account, date <

$dat e)

t hen Systemout.printin("Credit: " + $date + " :: " + $anount);
$account . set Bal ance($account . get Bal ance() +

$anount) ; System out. println("Account: " + $account.get Account No()

+ " - new bal ance: " + $account. getBal ance());

retract ($cashfl ow);

endrule "Rule 06 - Debit"

when $cashflow : All ocat edCashfl owm $account

account , $date :

dat e, $anount

anmount , type == TypedCashfl ow. DEBI T

) not Al | ocatedCashflow account == $account, date <

$dat e)

t hen Systemout.println("Debit: " + $date + " :: " + $amount);
$account . set Bal ance($account . get Bal ance() -

$anount) ; System out. println("Account: " + $account. get Account No()

+ " - new bal ance: " + $account. getBal ance());

retract ($cashfl ow);

623

Examples

Although we have separate rules for credits and debits, but we do not specify a type when checking
for earlier cashflows. This is so that all cashflows are applied in date order, regardless of the
cashflow type. In the conditions we identify the account to work with, and in the consequences
we update it with the cashflow amount.

Example 20.49. Banking Tutorial: Output of Example6.java

Loadi ng file: Exanpl e6. drl I nserting fact:
Al | ocat edCashf | ow[account =Account [account No=1, bal ance=0. 0], date=Mon Jan 01 00:00: 00 GWI
2007, t ype=Credi t, anpunt =300. 0] I nserti ng
Al | ocat edCashf | owf account =Account [account No=1, bal ance=0. 0], date=Mon Feb 05 00:00: 00 GMI
2007, t ype=Credi t, anpunt =100. O] | nserti ng
Al | ocat edCashf | ow] account =Account [account No=2, bal ance=0. 0] , dat e=Sun Mar 11 00:00:00 GvIr
2007, t ype=Cr edi t, anount =500. 0] I nserti ng
Al | ocat edCashf | ow[account =Account [account No=1, bal ance=0. 0], date=\Wed Feb 07 00:00: 00 GMI
2007, t ype=Debi t, anpbunt =800. 0] I nserti ng
Al | ocat edCashf | ow[account =Account [account No=2, bal ance=0. 0] , dat e=Fri Mar 02 00:00:00 Gwr
2007, t ype=Debi t , anbunt =400. 0] I nserti ng
Al | ocat edCashf | ow[account =Account [account No=1, bal ance=0. 0] , dat e=Sun Apr 01 00:00:00 BST
2007, t ype=Cr edi t, anpunt =200. 0] | nserti ng
Al | ocat edCashf | oW account =Account [account No=1, bal ance=0. 0] , date=Thu Apr 05 00:00: 00 BST
2007, t ype=Cr edi t, anount =300. 0] I nserti ng
Al | ocat edCashf | ow[account =Account [account No=2, bal ance=0. 0], dat e=Fri May 11 00:00: 00 BST
2007, t ype=Credi t, anount =700. 0] I nserti ng
Al | ocat edCashf | ow[account =Account [account No=1, bal ance=0. 0], date=Mon May 07 00: 00: 00 BST
2007, t ype=Debi t , anpbunt =900. 0] I nserti ng
Al | ocat edCashf | owf account =Account [account No=2, bal ance=0. 0], date=\Wed May 02 00: 00: 00 BST
2007, t ype=Debi t, anount =100. 0] Debi t: Fri Mar 02 00:00: 00 GMI 2007 :: 400.0Account: 2 - new
bal ance: -400.0Credit: Sun Mar 11 00: 00: 00 GMI 2007 :: 500. OAccount: 2 - new bal ance: 100. 0Debi t:
Wed May 02 00: 00: 00 BST 2007 :: 100. OAccount: 2 - new bal ance: 0.0Credit: Fri May 11 00: 00: 00 BST
2007 :: 700. OAccount: 2 - new bal ance: 700.0Credit: Mn Jan 01 00: 00: 00 GMTI 2007 :: 300. OAccount:
1 - new bal ance: 300.0Credit: Mn Feb 05 00:00:00 GMI 2007 :: 100.0Account: 1 - new bal ance:
400. 0Debit: Wed Feb 07 00:00:00 GMI 2007 :: 800.0Account: 1 - new bal ance: -400.0Credit: Sun
Apr 01 00:00: 00 BST 2007 :: 200. 0Account: 1 - new bal ance: -200.0Credit: Thu Apr 05 00: 00: 00 BST
2007 :: 300. 0Account: 1 - new bal ance: 100.0Debit: Mon May 07 00: 00: 00 BST 2007 :: 900. OAccount:
1 - new bal ance: -800.0
Exanpl e6. drl Inserting fact: AllocatedCashflow account=Account[account No=1, bal ance=0. 0], date=Mon Jan
01 00: 00: 00 GMT
2007, type=Credi t, anount =300. 0] I nserting fact: AllocatedCashflow account=Account[account No=1, bal ance=0. 0], dat e=M
05 00: 00: 00 GMT
2007, type=Credi t, anount =100. 0] Inserting fact: AllocatedCashflow account=Account[account No=2, bal ance=0. 0], dat e=S
11 00: 00: 00 GV
2007, type=Credi t, anount =500. 0] Inserting fact: AllocatedCashflow account=Account[account No=1, bal ance=0. 0], dat e=W\
07 00: 00: 00 GMTI
2007, t ype=Debi t, anpunt =800. 0] I nserting fact: AllocatedCashflow account=Account[account No=2, bal ance=0. 0], dat e=Fr
02 00: 00: 00 GMT
2007, t ype=Debi t, anount =400. O] I nserting fact: AllocatedCashflow account=Account[account No=1, bal ance=0. 0], dat e=Su
01 00: 00: 00 BST
2007, type=Credi t, anount =200. 0] Inserting fact: AllocatedCashflow account=Account[account No=1, bal ance=0. 0], dat e=T
05 00: 00: 00 BST
2007, type=Credi t, anount =300. 0] Inserting fact: AllocatedCashflow account=Account[account No=2, bal ance=0. 0], dat e=F
11 00: 00: 00 BST
2007, type=Credi t, anpunt =700. 0] Inserting fact: AllocatedCashflow account=Account[account No=1, bal ance=0. 0], dat e=M
07 00: 00: 00 BST
2007, t ype=Debi t, anount =900. 0] I nserting fact: AllocatedCashfl owf account=Account[account No=2, bal ance=0. 0], dat e=W\é
02 00: 00: 00 BST

624

Examples

2007, t ype=Debi t , anbunt =100. 0] Debi t: Fri Mar 02 00: 00: 00 GMT 2007 ::
400. OAccount: 2 - new bal ance:

-400.0Credit: Sun Mar 11 00: 00: 00 GMTI 2007 ::
500. OAccount: 2 - new bal ance:

100. ODebi t: Wed May 02 00: 00: 00 BST 2007 ::
100. OAccount: 2 - new bal ance:

0.0Credit: Fri May 11 00: 00: 00 BST 2007 :
700. OAccount: 2 - new bal ance:

700.0Credit: Mn Jan 01 00: 00: 00 GMI 2007 ::
300. OAccount: 1 - new bal ance:

300.0Credit: Mon Feb 05 00: 00: 00 GMVTI 2007 ::
100. OAccount: 1 - new bal ance:

400. 0Debi t: Wed Feb 07 00: 00: 00 GMTI 2007 ::
800. OAccount: 1 - new bal ance:

-400.0Credit: Sun Apr 01 00: 00: 00 BST 2007 ::
200. OAccount: 1 - new bal ance:

-200.0Credit: Thu Apr 05 00:00: 00 BST 2007 ::
300. OAccount: 1 - new bal ance:

100. ODebi t: Mon May 07 00: 00: 00 BST 2007 ::
900. OAccount: 1 - new bal ance:

20.6. Pricing Rule Decision Table Example

The Pricing Rule decision table demonstrates the use of a decision table in a spreadsheet, in
Excel's XLS format, in calculating the retail cost of an insurance policy. The purpose of the provide
set of rules is to calculate a base price and a discount for a car driver applying for a specific policy.
The driver's age, history and the policy type all contribute to what the basic premium is, and an
additional chunk of rules deals with refining this with a discount percentage.

Name: Exanple Policy Pricing

Mai n cl ass: org.drool s. exanpl es. deci si ont abl e. Pri ci ngRul eDTExanpl e
Modul e: dr ool s-exanpl es

Type: Java application

Rul es file: Exanpl ePolicyPricing.xls

Obj ective: denonstrate spreadsheet-based decision tables.

20.6.1. Executing the example

Open the file Pri ci ngRul eDTExanpl e. j ava and execute it as a Java application. It should pro-
duce the following output in the Console window:

Cheapest possi bl eBASE PRICE |'S: 120Dl SCOUNT |IS: 20
possi bl eBASE PRI CE
I'S: 120D SCOUNT |S: 20

The code to execute the example follows the usual pattern. The rules are loaded, the facts inserted
and a Stateless Session is created. What is different is how the rules are added.

625

Examples

Deci si onTabl eConfi gurati on dtabl econfiguration =
Know edgeBui | der Fact ory. newDeci si onTabl eConfi guration();
dt abl econfi guration. setl nput Type(Deci si onTabl el nput Type. XLS);

Know edgeBui | der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;

Resource x|l sRes = ResourceFact ory. newd assPat hResour ce(" Exanpl ePol i cyPricing. xl s",
getd ass());
kbui | der . add(x| sRes,
Resour ceType. DTABLE,
dt abl econfiguration);

Note the use of the DecisionTabl eConfiguration object. Its input type is set to
Deci si onTabl el nput Type. XLS. If you use the BRMS, all this is of course taken care of for you.

There are two fact types used in this example, Dri ver and Pol i cy. Both are used with their default
values. The Dri ver is 30 years old, has had no prior claims and currently has a risk profile of LOW
The Pol i cy being applied for is COWREHENSI VE, and it has not yet been approved.

20.6.2. The decision table

In this decision table, each row is a rule, and each column is a condition or an action.

RuleTable Pricing bracket]
[CONDITION [CONDITION [CONDITION [CONDITION ACTION ACTION
policy: Policy |

|Brrver
>=$1. ==$2 locationRiskProfile priorCiaims type 1 $param’’):
Age Bracket Location risk profile Number of pricr claims Palicy type applying for Base § AUD Record Reason

Figure 20.10. Decision table configuration

Referring to the spreadsheet show above, we have the Rul eSet declaration, which provides the
package name. There are also other optional items you can have here, such as Vari abl es for
global variables, and | npor t s for importing classes. In this case, the namespace of the rules is
the same as the fact classes we are using, so we can omit it.

Moving further down, we can see the Rul eTabl e declaration. The name after this (Pricing bracket)
is used as the prefix for all the generated rules. Below that, we have "CONDITION or ACTION",
indicating the purpose of the column, i.e., whether it forms part of the condition or the consequence
of the rule that will be generated.

You can see that there is a driver, his data spanned across three cells, which means that the
template expressions below it apply to that fact. We observe the driver's age range (which uses $1
and $2 with comma-separated values), | ocat i onRi skProfil e, and pri or d ai ns in the respec-
tive columns. In the action columns, we are set the policy base price and log a message.

626

Examples

i B c D E F G H
g Base pricing rules Age Bracket Lecation risk profile Number of prior claims. Policy type applying for Base § AUD Record Reason
10
Low 1 COMPREHENSIVE 450
11
MED FIRE_THEFT 200 Priors not relevant
12
Young safe packay 18, 24
e pe e MED o COMPREHENSIVE 300
13
Low FIRE_THEFT 150
14
e " SRUCESERISI i SHEITEETSTV S
15
18,24 MED 1 COMPREHENSIVE 00
16 Young risk
18.24 HIGH o COMPREHENSIVE 700 Location risk
17
TS e =13 il RESHTAR S
18
25,30 o COMPREHENSIVE 120 Ch!ap!st possible
19
25,30 1 COMPREHENSIVE 300
Mature drivers
20
25,30 2 COMPREHENSIVE 590
21
2535 3 Tt
— SlER LR il RS

Figure 20.11. Base price calculation

In the preceding spreadsheet section, there are broad category brackets, indicated by the com-
ment in the leftmost column. As we know the details of our drivers and their policies, we can tell
(with a bit of thought) that they should match row number 18, as they have no prior accidents, and
are 30 years old. This gives us a base price of 120.

29 Promotional discount rules Age Bracket Number of prior claims Policy type applying for Discount %
30 18,24 L COMPREHENSIVE 1
3
18,24 o FIRE_THEFT Z
& Rewards for safe drivers 25,30 1 COMPREHENSIVE 5
33
25,30 Z COMPREHENSIVE 1
34
280 ., SQUEREHENSIVE
el n

Figure 20.12. Discount calculation

The above section contains the conditions for the discount we might grant our driver. The discount
results from the Age bracket, the number of prior claims, and the policy type. In our case, the driver
is 30, with no prior claims, and is applying for a COVPREHENSI VE policy, which means we can give
a discount of 20%. Note that this is actually a separate table, but in the same worksheet, so that
different templates apply.

It is important to note that decision tables generate rules. This means they aren't simply top-down
logic, but more a means to capture data resulting in rules. This is a subtle difference that confuses

627

Examples

some people. The evaluation of the rules is not necessarily in the given order, since all the normal
mechanics of the rule engine still apply.

20.7. Pet Store Example

Nanme: Pet Store

Mai n cl ass: org.drool s. exanpl es. pet st or e. Pet St or eExanpl e

Modul e: drool s- exanpl es

Type: Java application

Rules file: PetStore.drl

Obj ective: Denpnstrate use of Agenda G oups, G obal Variables and integration with a GUJ,
including callbacks fromw thin the rules

The Pet Store example shows how to integrate Rules with a GUI, in this case a Swing based
desktop application. Within the rules file, it demonstrates how to use Agenda groups and auto-fo-
cus to control which of a set of rules is allowed to fire at any given time. It also illustrates the mixing
of the Java and MVEL dialects within the rules, the use of accumulate functions and the way of
calling Java functions from within the ruleset.

All of the Java code is contained in one file, Pet St or e. j ava, defining the following principal class-
es (in addition to several classes to handle Swing Events):

* Pet st or e contains the mai n() method that we will look at shortly.

* Pet St or eUl is responsible for creating and displaying the Swing based GUI. It contains several
smaller classes, mainly for responding to various GUI events such as mouse button clicks.

* Tabl eMbdel holds the table data. Think of it as a JavaBean that extends the Swing class Ab-
stract Tabl eModel .

» Checkout Cal | back allows the GUI to interact with the Rules.

e O der showkeeps the items that we wish to buy.

* Purchase stores details of the order and the products we are buying.

* Product is a JavaBean holding details of the product available for purchase, and its price.

Much of the Java code is either plain JavaBeans or Swing-based. Only a few Swing-related points
will be discussed in this section, but a good tutorial about Swing components can be found at
Sun's Swing website, in http://java.sun.com/docs/books/tutorial/uiswing/.

The pieces of Java code in Pet st or e. j ava that relate to rules and facts are shown below.

Example 20.50. Creating the PetStore KieContainer in PetStore.main

/] KieServices is the factory for all KIE services
Ki eServi ces ks = Ki eServices. Factory.get();

628

http://java.sun.com/docs/books/tutorial/uiswing/

Examples

/'l Fromthe kie services, a container is created fromthe classpath
Ki eCont ai ner kc = ks. get Ki ed asspat hCont ai ner () ;

/] Create the stock.

Vect or <Product > stock = new Vect or <Product >();
st ock. add(new Product("Gold Fish", 5));

st ock. add(new Product("Fish Tank", 25));
st ock. add(new Product("Fish Food", 2));

/1 A callback is responsible for populating the
/1 Working Menory and for firing all rules.
Pet StoreUl ui = new Pet StoreU (stock,
new Checkout Cal | back(kc));
ui . cr eat eAndShowCUl () ;

The code shown above create a Ki eCont ai ner from the classpath and based on the definitions
in the knmodul e. xm file. Unlike other examples where the facts are asserted and fired straight
away, this example defers this step to later. The way it does this is via the second last line where
a Pet St or eUl object is created using a constructor accepting the Vect or object st ock collecting
our products, and an instance of the Checkout Cal | back class containing the Rule Base that we
have just loaded.

The Java code that fires the rules is within the Checkout Cal | Back. checkout () method. This is
triggered (eventually) when the Checkout button is pressed by the user.

Example 20.51. Firing the Rules - extract from CheckoutCallBack.checkout()

public String checkout (JFranme frane, List<Product> itens) {
Order order = new Order();

/] 1terate through Iist and add to cart
for (Product p: items) {
order. addl tenm(new Purchase(order, p));
/1 Add the JFrane to the ApplicationData to allow for user interaction
/1 Fromthe container, a session is created based on
/] its definition and configuration in the META-|INF/ knodul e. xm file

Ki eSessi on ksessi on = kcont ai ner. newKi eSessi on(" Pet St or eKS") ;

ksession.setd obal ("frame", frane);
ksessi on. set @ obal ("textArea", this.output);

ksession.insert(new Product("Gold Fish", 5));
ksession.insert(new Product("Fish Tank", 25));
ksession.insert(new Product("Fish Food", 2));

ksession.insert(new Product("Fish Food Sanple", 0));

ksession.insert(order);
ksession.fireA |l Rul es();

/] Return the state of the cart

629

Examples

return order.toString();

Two items get passed into this method. One is the handle to the JFr anme Swing component sur-
rounding the output text frame, at the bottom of the GUI. The second is a list of order items; this
comes from the Tabl eMbdel storing the information from the "Table" area at the top right section
of the GUI.

The for loop transforms the list of order items coming from the GUI into the Or der JavaBean, also
contained in the file Pet St or e. j ava. Note that it would be possible to refer to the Swing dataset
directly within the rules, but it is better coding practice to do it this way, using simple Java objects.
It means that we are not tied to Swing if we wanted to transform the sample into a Web application.

It is important to note that all state in this example is stored in the Swing components, and that
the rules are effectively stateless. Each time the "Checkout" button is pressed, this code copies
the contents of the Swing Tabl eModel into the Session's Working Memory.

Within this code, there are nine calls to the Ki eSessi on. The first of these creates a new Ki eSes-
si on from the Ki eCont ai ner . Remember that we passed in this Ki eCont ai ner when we created
the Checkout Cal | Back class in the mai n() method. The next two calls pass in two objects that
we will hold as global variables in the rules: the Swing text area and the Swing frame used for
writing messages.

More inserts put information on products into the Ki eSessi on, as well as the order list. The final
call is the standard fi r eAl | Rul es() . Next, we look at what this method causes to happen within
the rules file.

Example 20.52. Package, Imports, Globals and Dialect: extract from
PetStore.drl

package org. drool s. exanpl es

i nport org.kie.api.runtine.Ki eRuntine

i nport org.drool s. exanpl es. pet st or e. Pet St or eExanpl e. Or der

i nport org.drool s. exanpl es. pet st or e. Pet St or eExanpl e. Pur chase
i nport org.drool s. exanpl es. pet st or e. Pet St or eExanpl e. Product

i nport java.util.ArrayLi st

i nport javax.sw ng. JOpti onPane;

i nport javax.sw ng. JFrane

gl obal JFranme frane
gl obal javax.sw ng.JText Area textArea

The first part of file Pet St or e. dr| contains the standard package and import statements to make
various Java classes available to the rules. New to us are the two globals frane and t ext Ar ea.
They hold references to the Swing components JFr ane and JText Ar ea components that were
previously passed on by the Java code calling the set @ obal () method. Unlike variables in rules,

630

Examples

which expire as soon as the rule has fired, global variables retain their value for the lifetime of

the Session.

The next extract from the file Pet St ore. drl contains two functions that are referenced by the

rules that we will look at shortly.

Example 20.53. Java Functions in the Rules: extract from PetStore.drl

function void doCheckout (JFranme frame, KieRuntime krt) {

Object[] options = {"Yes",
"No"};

int n = JOptionPane. showOpti onDi al og(frane,

if (n==0) {

"Woul d you like to checkout?",

nn
1

JOpt i onPane. YES_NO_OPTI ON,
JOpt i onPane. QUESTI ON_MESSAGE,
nul |,

options,

options[0]);

krt. get Agenda() . get AgendaGr oup("checkout").setFocus();

function bool ean requireTank(JFrane frame, KieRuntime krt, Order order, Product fishTank, int total) {

bj ect[] options = {"Yes",
"No"};

int n = JOptionPane. showOpti onDi al og(frane,

"Purchase Suggestion",

JOpt i onPane. YES_NO_OPTI ON,
JOpt i onPane. QUESTI ON_MESSAGE,
nul |,

opti ons,

options[0]);

Systemout. print("SUGGESTION:. Wuld you like to buy a tank for your "

+ total

if (n==0) {

+ " fish? - ");

Purchase purchase = new Purchase(order, fishTank);

krt.insert(purchase);
order. addl tenm(purchase);
Systemout.println("Yes");

} else {

Systemout.println("No");

}

return true,;

Having these functions in the rules file just makes the Pet Store example more

"Woul d you like to buy a tank for your " + total + " fish?",

compact. In re-

al life you probably have the functions in a file of their own, within the same rules package,

631

Examples

or as a static method on a standard Java class, and import them, using i nport function
ny. package. Foo. hel | o.

The purpose of these two functions is:

» doCheckout () displays a dialog asking users whether they wish to checkout. If they do, focus
is set to the checkout agenda-group, allowing rules in that group to (potentially) fire.

* requireTank() displays a dialog asking users whether they wish to buy a tank. If so, a new
fish tank Pr oduct is added to the order list in Working Memory.

We'll see the rules that call these functions later on. The next set of examples are from the Pet
Store rules themselves. The first extract is the one that happens to fire first, partly because it has
the aut o- f ocus attribute set to true.

Example 20.54. Putting items into working memory: extract from
PetStore.drl

/1 lInsert each item in the shopping cart into the Wrking Menory // Insert each item in

the shopping cart into the Wrking Menoryrule "Explode Cart" agenda-group "init"
aut o-focus true sal i ence 10 di al ect "java"when $order : Oder(grossTotal
= -1) $item : Purchase() from $order.itensthen insert($item);

kcont ext . get Know edgeRunti nme() . get Agenda() . get AgendaG oup("show itens").setFocus();
kcont ext . get Know edgeRunti nme() . get Agenda() . get AgendaGroup("eval uate"). setFocus();end
Menory // Insert each itemin the shopping cart into
the Working Menory
rule "Expl ode Cart"
agenda-group "init"
aut o-focus true
sal i ence 10

di al ect "java"when $order : Order(grossTotal
= -1) $item:
Pur chase()
from $order.itensthen
insert($item); kcont ext . get Knowl edgeRunt i me() . get Agenda() . get AgendaG oup(
"show itens").setFocus();
kcont ext . get Know edgeRunti me() . get Agenda() . get AgendaG oup(

This rule matches against all orders that do not yet have their gr ossTot al calculated . It loops
for each purchase item in that order. Some parts of the "Explode Cart" rule should be familiar:
the rule name, the salience (suggesting the order for the rules being fired) and the dialect set to
"java". There are three new features:

e agenda-group "init" defines the name of the agenda group. In this case, there is only one
rule in the group. However, neither the Java code nor a rule consequence sets the focus to this
group, and therefore it relies on the next attribute for its chance to fire.

e auto-focus true ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fi reAl | Rul es() is called from the Java code.

632

Examples

e kcontext....setFocus() setsthe focustothe"showitens" and"eval uat e" agenda groups
in turn, permitting their rules to fire. In practice, we loop through all items on the order, inserting
them into memory, then firing the other rules after each insert.

The next two listings show the rules within the "show i t ens" and eval uat e agenda groups. We
look at them in the order that they are called.

Example 20.55. Show Items in the GUI - extract from PetStore.drl

rule "Show I tens"

agenda- group "show itens"

di al ect "nmvel "
when

$order : Order()

$p : Purchase(order == $order)
then

t ext Ar ea. append($p. product + "\n");

end

The "show itens" agenda-group has only one rule, called "Show Items" (note the difference
in case). For each purchase on the order currently in the Working Memory (or Session), it logs
details to the text area at the bottom of the GUI. The t ext Ar ea variable used to do this is one of
the global variables we looked at earlier.

The eval uat e Agenda group also gains focus from the "Expl ode Cart" rule listed previously.
This Agenda group has two rules, " Free Fi sh Food Sanpl e" and" Suggest Tank", shown below.

Example 20.56. Evaluate Agenda Group: extract from PetStore.drl

/'l Free Fish Food sanple when we buy a CGold Fish if we haven't already bought // Fish Food and
don't already have a Fish Food Sanplerule "Free Fish Food Sanple" agenda- group "eval uate"
di al ect "nmvel "when $order : Order() not ($p : Product(nanme == "Fish Food")
&anp; &np; Purchase(product == $p)) not ($p : Product(name == "Fish Food Sanple")
&anp; &np; Purchase(product == $p)) exists ($p : Product(name == "Gold Fish") &anp; &np;
Pur chase(product == $p)) $fi shFoodSanpl e : Product(name == "Fi sh Food Sanple");then
System out.println("Adding free Fish Food Sanple to cart"); pur chase = new Pur chase($or der,
$f i shFoodSanpl e) ; insert(purchase); $order. addl tem(purchase); end// Suggest a tank
if we have bought nore than 5 gold fish and don't already have onerule "Suggest Tank"
agenda- group "eval uate" di al ect "java"when $order : Order() not ($p : Product(name
== "Fish Tank") &anp;&anp; Purchase(product == $p)) ArrayList($total : size > 5)
from coll ect(Purchase(product.name == "Gold Fish")) $fi shTank : Product(name == "Fish
Tank")then requi reTank(frane, kcontext.getKi eRuntime(), $order, $fishTank, $total); end
bought // Fish Food and don't already have a Fish Food
Sanpl erul e "Free Fi sh Food

Sanpl e" agenda- gr oup

"eval uat e" di al ect

"nmvel "when $or der

Order () not ($p : Product(name == "Fish Food") &anp; &np; Purchase(product == $p)
) not ($p : Product(name == "Fish Food Sanple") &anp;&anp; Purchase(product == $p)
) exists ($p : Product(name == "CGold Fish") &anp; &np; Purchase(product == $p)

) $fi shFoodSanpl e : Product(nane == "Fi sh Food Sanple"

633

Examples

);then Systemout. println("Adding free Fish Food Sanple to cart"

) purchase = new Purchase($order,
$f i shFoodSanpl e) ; insert(purchase
) $order. addl tem(purchase

)i

end// Suggest a tank if we have bought nore than 5 gold fish and don't already have
onerul e "Suggest

Tank" agenda- gr oup

"eval uat e" di al ect

"j ava"when $order :

O der () not ($p : Product(name == "Fish Tank") &anp;&np; Purchase(product == $p)

) ArrayList($total : size &t; 5) fromcollect(Purchase(product.name == "CGold Fish")
) $fi shTank : Product(nane == "Fi sh Tank"

)t hen requi reTank(frame, kcontext.getKieRuntine(), $order, $fishTank,
$total);

The rule "Free Fish Food Sanpl e" will only fire if

« we don't already have any fish food, and
« we don't already have a free fish food sample, and
» we do have a Gold Fish in our order.

If the rule does fire, it creates a new product (Fish Food Sample), and adds it to the order in
Working Memory.

The rule " Suggest Tank" will only fire if

« we don't already have a Fish Tank in our order, and
+ we do have more than 5 Gold Fish Products in our order.

If the rule does fire, it calls the r equi r eTank() function that we looked at earlier (showing a Dialog
to the user, and adding a Tank to the order / working memory if confirmed). When calling the
requireTank() function the rule passes the global frame variable so that the function has a handle
to the Swing GUIL.

The next rule we look at is "do checkout .

Example 20.57. Doing the Checkout - extract (6) from PetStore.drl

rule "do checkout™ dialect "java" when t hen doCheckout (frane,
kcont ext . get Ki eRunti ne()); end

out" di al ect

"java"

when

t hen doCheckout (frane,

kcont ext . get Ki eRuntine());

634

Examples

The rule "do checkout" has no agenda group set and no auto-focus attribute. As such, is is
deemed part of the default (MAIN) agenda group. This group gets focus by default when all the
rules in agenda-groups that explicitly had focus set to them have run their course.

There is no LHS to the rule, so the RHS will always call the doCheckout () function. When calling
the doCheckout () function, the rule passes the global f r ame variable to give the function a handle
to the Swing GUI. As we saw earlier, the doCheckout () function shows a confirmation dialog to
the user. If confirmed, the function sets the focus to the checkout agenda-group, allowing the next
lot of rules to fire.

Example 20.58. Checkout Rules: extract from PetStore.drl

rule "Gross Total " agenda- group "checkout" di al ect "nvel "when $order : Order(grossTotal
== -1) Nunber(total : doubleVal ue) fromaccunul at e(Purchase($price : product.price),
sum($price))then nodi fy($order) { grossTotal = total }; t ext Area. append("\ ngross
total =" +total + "\n");endrule "Apply 5%Di scount" agenda- group "checkout "di al ect "nvel "when
$order : Order(grossTotal >= 10 &anp;&np; & t; 20)then $or der. di scountedTotal =
$order. grossTotal * 0.95; t ext Area. append("di scountedTotal total=" + $order.di scountedTot al
+ "\n");endrule "Apply 10% D scount" agenda- group "checkout" di al ect "nmvel "when
$order : Order(grossTotal >= 20)then $order.di scountedTotal = $order.grossTotal * 0.90;
t ext Area. append("di scountedTotal total =" + $order.discountedTotal + "\n");end
tal" agenda- gr oup
"checkout " di al ect
"mvel "

when $order : Order(grossTotal ==

-1) Nunber (total : doubl eVval ue

) from accunmul at e(Purchase($price : product.price), sum($price)
)

t hen nmodi fy($order) { grossTotal = total

}s t ext Area. append(“"\ngross total=" + total + "\n"

DE

endrule "Apply 5%
Di scount " agenda- gr oup
"checkout "di al ect

"nvel "

when $order : Order(grossTotal >= 10 &anp; &np; & t; 20

)

then $order.di scountedTotal = $order.grossTotal *

0. 95; t ext Area. append("di scountedTotal total =" + $order.di scountedTotal + "\n"

)i

endrul e "Apply 10%

Di scount " agenda- gr oup
"checkout " di al ect
"nvel "

when $order : Order(grossTotal >= 20
)

t hen $or der. di scount edTotal = $order.grossTotal *
0. 90; t ext Area. append("di scountedTotal total =" + $order.discountedTotal + "\n"

)i

There are three rules in the checkout agenda-group:

635

Examples

« If we haven't already calculated the gross total, G oss Tot al accumulates the product prices
into a total, puts this total into the session, and displays it via the Swing JText Ar ea, using the
t ext Ar ea global variable yet again.

« If our gross total is between 10 and 20, " Appl y 5% Di scount " calculates the discounted total
and adds it to the session and displays it in the text area.

« If our gross total is not less than 20, "Apply 10% Di scount” calculates the discounted total
and adds it to the session and displays it in the text area.

Now that we've run through what happens in the code, let's have a look at what happens when
we actually run the code. The file Pet St or e. j ava contains a mai n() method, so that it can be run
as a standard Java application, either from the command line or via the IDE. This assumes you
have your classpath set correctly. (See the start of the examples section for more information.)

The first screen that we see is the Pet Store Demo. It has a list of available products (top left),
an empty list of selected products (top right), checkout and reset buttons (middle) and an empty
system messages area (bottom).

List Table
Gold Fish 5.0 Mame | Price
Fish Tank 25.0
Fish Food 2.0
Checkout || Reset |

[»

1

Figure 20.13. PetStore Demo just after Launch

To get to this point, the following things have happened:

636

Examples

1. The mai n() method has run and loaded the Rule Base but not yet fired the rules. So far, this
is the only code in connection with rules that has been run.

2. Anew Pet St or eUl object has been created and given a handle to the Rule Base, for later use.

3. Various Swing components do their stuff, and the above screen is shown and waits for user
input.

Clicking on various products from the list might give you a screen similar to the one below.

LJ Pet 5tore Demo :

List Table
old Fish 5.0 _ Name Price

Fish Tank 25, Gold Fish 50

Fish Food 2.0 Gold Fish 5.0
Gold Fish 5.0
Gold Fish 50
Gold Fish 50
Gold Fish 50

Checkout || Reset |

1]

Figure 20.14. PetStore Demo with Products Selected

Note that no rules code has been fired here. This is only Swing code, listening for mouse click
events, and adding some selected product to the Tabl eMbdel object for display in the top right
hand section. (As an aside, note that this is a classic use of the Model View Controller design
pattern).

It is only when we press the "Checkout" button that we fire our business rules, in roughly the same
order that we walked through the code earlier.

637

Examples

1. Method CheckQut Cal | Back. checkout () is called (eventually) by the Swing class waiting for
the click on the "Checkout" button. This inserts the data from the Tabl eMbdel object (top right
hand side of the GUI), and inserts it into the Session's Working Memory. It then fires the rules.

2. The "Expl ode Cart" rule is the first to fire, given that it has aut o- f ocus set to true. It loops
through all the products in the cart, ensures that the products are in the Working Memory, and
then gives the "Show Itens"” and Eval uati on agenda groups a chance to fire. The rules in
these groups add the contents of the cart to the text area (at the bottom of the window), decide
whether or not to give us free fish food, and to ask us whether we want to buy a fish tank. This
is shown in the figure below.

Purchase Suggestion &J

IE' ‘Would you like to buy a tank for your 6 fish?

Figure 20.15. Do we want to buy a fish tank?

1. The Do Checkout rule is the next to fire as it (a) No other agenda group currently has focus
and (b) it is part of the default (MAIN) agenda group. It always calls the doCheckout() function
which displays a 'Would you like to Checkout?' Dialog Box.

2. The doCheckout () function sets the focus to the checkout agenda-group, giving the rules in
that group the option to fire.

3. The rules in the the checkout agenda-group display the contents of the cart and apply the
appropriate discount.

4. Swing then waits for user input to either checkout more products (and to cause the rules to fire
again), or to close the GUI - see the figure below.

638

Examples

| £ | Pet Store Demo

List Table
Gold Fish 5.0 Mame Price
Fish Tank 25.0 Gold Fish 5.0
Fish Food 2.0 Cold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Checkout | | Reset |
| |Fish Food Sample 0.0 - |
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Gold Fish 5.0
Fish Tank 25.0
Gold Fish 5.0
gross total=55.0
discountedTotal total=49.5

Figure 20.16. Petstore Demo after all rules have fired.

We could add more System.out calls to demonstrate this flow of events. The output, as it currently
appears in the Console window, is given in the listing below.

Example 20.59. Console (System.out) from running the PetStore GUI

Addi ng free Fi sh Food Sanpl e to cart SUGGESTI ON: Wuld you li ke to buy a tank for your 6 fish? - Yes
SUGGESTI ON: Woul d you like to buy a tank for your 6 fish? -

20.8. Honest Politician Example

Name: Honest Politician

Mai n cl ass: org.drool s. exanpl es. honest pol i tici an. Honest Pol i ti ci anExanpl e

Modul e: dr ool s-exanpl es

Type: Java application

Rul es file: HonestPoliticianExanple.drl

Obj ective: Illustrate the concept of "truth mai ntenance" based on the | ogical insertion of facts

639

Examples

The Honest Politician example demonstrates truth maintenance with logical assertions. The basic
premise is that an object can only exist while a statement is true. A rule's consequence can logically
insert an object with the i nsert Logi cal () method. This means the object will only remain in the
Working Memory as long as the rule that logically inserted it remains true. When the rule is no
longer true the object is automatically retracted.

In this example there is the class Pol i ti ci an, with a name and a boolean value for being honest.
Four politicians with honest state set to true are inserted.

Example 20.60. Class Politician

public class Politician {
private String nane;
private bool ean honest;

Example 20.61. Honest Politician: Execution

Politician blair = new Politician("blair", true);
Politician bush = new Politician("bush", true);
Politician chirac = new Politician("chirac", true);
Politician schroder = new Politician("schroder", true);

ksession.insert(blair);
ksession.insert(bush);
ksession.insert(chirac);
ksession.insert(schroder);

ksession.fireAl |l Rul es();

The Console window output shows that, while there is at least one honest politician, democracy
lives. However, as each politician is in turn corrupted by an evil corporation, so that all politicians
become dishonest, democracy is dead.

Example 20.62. Honest Politician: Console Output

Hurrah!!! Denocracy Livesl'm an evil corporation and | have corrupted schroderl'm an evil
corporation and | have corrupted chiracl'man evil corporation and | have corrupted bushl'm an
evil corporation and | have corrupted blairW are all Dooned!!! Denocracy is Dead

cy Livesl'man evil corporation and | have

corrupted schroderl'man evil corporation and | have
corrupted chiracl'man evil corporation and | have
corrupted bushl'man evil corporation and | have
corrupted blairWe are all Dooned!!! Denocracy

640

Examples

As soon as there is at least one honest politician in the Working Memory a new Hope object is
logically asserted. This object will only exist while there is at least one honest politician. As soon
as all politicians are dishonest, the Hope object will be automatically retracted. This rule is given
a salience of 10 to ensure that it fires before any other rule, as at this stage the "Hope is Dead"
rule is actually true.

Example 20.63. Honest Politician: Rule "We have an honest politician”

rule "We have an honest Politician" sal i ence 10 when exists(Politician(honest
== true)) then insertLogi cal (new Hope());end

Politician" sal i ence

10

when exists(Politician(honest == true)

)

t hen i nsertLogi cal (new Hope()

As soon as a Hope object exists the "Hope Lives" rule matches and fires. It has a salience of 10
so that it takes priority over "Corrupt the Honest".

Example 20.64. Honest Politician: Rule "Hope Lives"

rul e "Hope Lives"
sal i ence 10
when
exi sts(Hope())
then
Systemout. println("Hurrah!!! Denocracy Lives");
end

Now that there is hope and we have, at the start, four honest politicians, we have four activations
for this rule, all in conflict. They will fire in turn, corrupting each politician so that they are no longer
honest. When all four politicians have been corrupted we have no politicians with the property
honest == true. Thus, the rule "We have an honest Politician" is no longer true and the object
it logical inserted (due to the last execution of new Hope()) is automatically retracted.

Example 20.65. Honest Politician: Rule "Corrupt the Honest"

rule "Corrupt the Honest" when politician : Politician(honest == true)

exi sts(Hope()) t hen Systemout.println("I'"man evil corporation and | have
corrupted " + politician.getNanme()); nodify (politician) { honest = false };end
Honest "
when politician : Politician(honest == true)

exi sts(Hope()

t hen Systemout.println("I'man evil corporation and | have corrupted " + politician.get Name()
) nodify (politician) { honest = false

641

Examples

With the Hope object being automatically retracted, via the truth maintenance system, the condi-
tional element not applied to Hope is no longer true so that the following rule will match and fire.

Example 20.66. Honest Politician: Rule "Hope is Dead"

rule "Hope i s Dead"

end

when

not (Hope())

t hen

Systemout.printin("We are all Dooned!!! Denocracy is Dead");

Let's take a look at the Audit trail for this application:

Problems | Javadoc | Decdlaration | Search | Console | Error Log | History "-l,' Audit Wiew Properties

Object inserted (1) org, drools, examples HonestPoliticianExample$Politiciani@cof Lec

= Ackivation created: Rule We have an honest Palitician

=r Ackivation created: Rule Hope is Dead

Object inserted (2): org.drools.examples HonestPoliticianE:xamplegPalitician@ 1 FF92FS

Object inserted {3): org, drools. examples HonestPaliticianExamplegPalitician@2505F

Object inserted (4): org, droals.examples HonestPaliticianExampledPalitician@ 1 7basaf

Activation executed: Rule We have an honest Politician
Ohiject inserted (5): org.drools. examples, HonestPoliticianE xample$Hope@asZ55c
=* Ackivation created: Rule Hope Lives
A Activation cancelled: Rule Hope is Dead
=r Ackivation created: Rule Corrupt the Honest politician=org. drools, examples. HonestPoliticianEx.ampletPolitician@oS0SF 3
=r Ackivation created: Rule Corrupt the Honest politician=org. drools, exanmples. HonestPaliticianExampletPalitician@odf 1ec(1)
=r Ackivation created: Rule Corrupt the Honest politician=org. drools, examples. HonestPaliticianEx.ampletPalitician@ 1 ThaZar(<4)
= Activation created: Rule Corrupt the Honest politician=org. droals. examples, HonestPoliticianE:xamplegPaliticiand@ 1 FF92F5E2)

Activation executed: Rule Hope Lives

Activation executed: Rule Corrupt the Honest palitician=arg. droals, examples, HonestPaliticianExample$Politician@ 1 7ba3sf4)
Object updated {4): org.drocls. examples. HonestPaliticianExample$Politician@ 1 7bas5F

Activation executed: Rule Corrupt the Honest politician=org. drools. examples, HonestPoliticianE x.ample $Politician@as0sFi3)
Ohiject updated (3): org.drools, examples . HonestPoliticianExampledPoliticiani@aso st

Ackivation executed: Rule Corrupk the Honest politician=org. drools, examples HonestPoliticianE xamplefPoliticiani@ 1FFIzFaz)
Object updated {2): org.drools, examples, HonestPoliticianExamplefPoliticiani@ LFFOZFS

Activakion executed: Rule Corrupk the Honest politician=org. drools, examples HonestPoliticianE xample$Politician@c0f leci 1)
Object updated (1} org.drools, examples HdnestPdI|I:|c|anExampIe$PdI|t|u:|an@u:DFlec

nples.HonestPaliticianExampletHop

= Ackivation created Rule Hope is Dead
Activation executed: Rule Hope is Dead

Figure 20.17. Honest Politician Example Audit View

The moment we insert the first politician we have two activations. The rule "We have an honest
Politician" is activated only once for the first inserted politician because it uses an exi st's condi-
tional element, which matches once for any number. The rule "Hope is Dead" is also activated at
this stage, because we have not yet inserted the Hope object. Rule "We have an honest Politician"
fires first, as it has a higher salience than "Hope is Dead", which inserts the Hope object. (That

642

Examples

action is highlighted green.) The insertion of the Hope object activates "Hope Lives" and de-acti-
vates "Hope is Dead"; it also activates "Corrupt the Honest" for each inserted honest politician.
Rule "Hope Lives" executes, printing "Hurrah!!! Democracy Lives". Then, for each politician, rule
"Corrupt the Honest" fires, printing "I'm an evil corporation and | have corrupted X", where X is the
name of the politician, and modifies the politician's honest value to false. When the last honest
politician is corrupted, Hope is automatically retracted, by the truth maintenance system, as shown
by the blue highlighted area. The green highlighted area shows the origin of the currently selected
blue highlighted area. Once the Hope fact is retracted, "Hope is dead" activates and fires printing
"We are all Doomed!!! Democracy is Dead".

20.9. Sudoku Example

Nanme: Sudoku

Mai n cl ass: org.drool s. exanpl es. sudoku. SudokuExanpl e

Type: Java application

Rules file: sudoku.drl, validate.drl

Obj ective: Denpnstrates the solving of |ogic problens, and conpl ex pattern matching.

This example demonstrates how Drools can be used to find a solution in a large potential solution
space based on a number of constraints. We use the popular puzzle of Sudoku. This example
also shows how Drools can be integrated into a graphical interface and how callbacks can be used
to interact with a running Drools rules engine in order to update the graphical interface based on
changes in the Working Memory at runtime.

20.9.1. Sudoku Overview

Sudoku is a logic-based number placement puzzle. The objective is to fill a 9x9 grid so that each
column, each row, and each of the nine 3x3 zones contains the digits from 1 to 9, once, and only
once.

The puzzle setter provides a partially completed grid and the puzzle solver's task is to complete
the grid with these constraints.

The general strategy to solve the problem is to ensure that when you insert a new number it should
be unique in its particular 3x3 zone, row and column.

See Wikipedia [http://en.wikipedia.org/wiki/Sudoku] for a more detailed description.

20.9.2. Running the Example

Download and install drools-examples as described above and then execute java
org. drool s. exanpl es. Dr ool sExanpl esApp and click on "SudokuExample".

The window contains an empty grid, but the program comes with a number of grids stored internally
which can be loaded and solved. Click on "File", then "Samples" and select "Simple" to load one
of the examples. Note that all buttons are disabled until a grid is loaded.

643

http://en.wikipedia.org/wiki/Sudoku
http://en.wikipedia.org/wiki/Sudoku

Examples

(B Drools Sudoku Example ==
File |
Samples } Simple
Open... Medium
Exit Hard 1
Hard 2
Hard 3
Hard 4
!DELIBERATELY BROKEM!
Solve Step Dump

Figure 20.18. Initial screen

Loading the "Simple" example fills the grid according to the puzzle's initial state.

644

Examples

P Drools Sudo Xample

56 974

%

Ul
~NUIN| O B0
N OO OY

O W
O ~d= U100 W

ouls 0ONO
(o) (e
(o)] (oo Jr =1 Ne
LY O WU

4 9 3 5

Solve Step Dump

Figure 20.19. After loading "Simple"

Click on the "Solve" button and the Drools-based engine will fill out the remaining values, and the
buttons are inactive once more.

645

Examples

N OY U — 00|~ O W|z
B ~J W[N O 0o U

O 00 |UTW NN B O
~NUTN WO & 000
= WO 00 UTH|IWOIN N
0L OINONIWUTE
W= HEIN 00O IUTINIO
UTN OO J WO = &
G O = &~ U1jco WIN)

Figure 20.20. "Simple" Solved

Alternatively, you may click on the "Step" button to see the next digit found by the rule set. The
Console window will display detailed information about the rules which are executing to solve the
step in a human readable form. Some examples of these messages are presented below.

single 8 at [0, 1]

colum elimnation due to [1,2]: renmove 9 from[4, 2]

hi dden single 9 at [1, 2]

row elimnation due to [2,8]: renove 7 from][2,4]
renove 6 from[3,8] due to naked pair at [3,2] and [3,7]
hi dden pair in row at [4,6] and [4,4]

Click on the "Dump" button to see the state of the grid, with cells showing either the established
value or the remaining possibilitiescandidates.

Col: O Col: 1 Col: 2 Col: 3 Col: 4 Col: 5
Col: 6 Col: 7 Col: 8
Row O: 24 79 2 456 4567 9 2356 9 ---5--- ---1---
3 679 ---8--- 4 67
Row 1: 12 79 ---8--- 1 67 9 23 6 9 --- 4 --- 23 67 1
3 67 9 3 679 ---5---

646

Examples

Row 2: 1 4 7 9 1 456 --- 3 --- 56 89 5 78 5678
.- 2 --- 4679 1 4 67

Row 3: 1234 12345 1 45 12 5 8 --- 6 --- 2 578
5 78 45 7 --- 9 ---

Row 4. --- 6 --- =--- 7 --- 5 --- 4 --- 2 5 8 --- 9 ---
5 8 --- 1 - === 3 ---

Row 5: --- 8 --- 12 45 1 45 9 12 5 --- 3 --- 2 57
567 4567 2 4 67

Row 6: 1 3 7 13 6 --- 2 --- 3 56 8 5 8 3 56 8
.- 4 - 3567 9 1 678

Row 7: --- 5 --- 1346 1 4 678 3 68 --- 9 --- 34 6 8 1
3 678 --- 2 --- 1 678

Row 8: 34 --- 9 --- 46 8 T B B 23456 8
3 56 8 3 56 6 8

Now, let us load a Sudoku grid that is deliberately invalid. Click on "File", "Samples" and "!
DELIBERATELY BROKEN!". Note that this grid starts with some issues, for example the value
5 appears twice in the first row.

ﬁ, Jroo HdokL = n) =

File

5 41 95
6 7 5 1

N
I

wo
-
U
0o

Solve Step Dump

Figure 20.21. Broken initial state

A few simple rules perform a sanity check, right after loading a grid. In this case, the following
messages are printed on standard output:

647

Examples

cell [0,8]: 5 has a duplicate in row 0
cell [0,0]: 5 has a duplicate in row O
cell [6,0]: 8 has a duplicate in col O
cell [4,0]: 8 has a duplicate in col O
Val i dati on conpl ete

Nevertheless, click on the "Solve" button to apply the solving rules to this invalid grid. This will not
complete; some cells remain empty.

{, Jroo ndoki = D1E

NP oo 00 [NoYUE
WOV NI|BA N0
UINRINO (W

O WIN =00 UTN
OdEB OUII= 00 W
00 = U1|OY WO N B~
N O = U100 WO
~0U1 00dOY| =IO
OO N |NBU

Figure 20.22. Broken "solved" state

The solving functionality has been achieved by the use of rules that implement standard solving
techniques. They are based on the sets of values that are still candidates for a cell. If, for instance,
such a set contains a single value, then this is the value for the cell. A little less obvious is the single
occurrence of a value in one of the groups of nine cells. The rules detecting these situations insert
a fact of type Setting with the solution value for some specific cell. This fact causes the elimination
of this value from all other cells in any of the groups the cell belongs to. Finally, it is retracted.

Other rules merely reduce the permissible values for some cells. Rules "naked pair”, "hidden pair

in row", "hidden pair in column" and "hidden pair in square" merely eliminate possibilities but do
not establish solutions. More sophisticated eliminations are done by "X-wings in rows", "X-wings

in columns", "intersection removal row" and "intersection removal column".

648

Examples

20.9.3. Java Source and Rules Overview

The Java source code can be found in the /src/main/java/org/drools/examples/sudoku directory,
with the two DRL files defining the rules located in the /src/main/rules/org/drools/examples/sudoku
directory.

The package or g. dr ool s. exanpl es. sudoku. swi ng contains a set of classes which implement
a framework for Sudoku puzzles. Note that this package does not have any dependencies on
the Drools libraries. SudokuGri dMbdel defines an interface which can be implemented to store a
Sudoku puzzle as a 9x9 grid of Cel | objects. SudokuG i dVi ewis a Swing component which can
visualize any implementation of SudokuGri dMbdel . SudokuG i dEvent and SudokuG i dLi st ener
are used to communicate state changes between the model and the view: events are fired when
a cell's value is resolved or changed. If you are familiar with the model-view-controller patterns in
other Swing components such as JTabl e then this pattern should be familiar. SudokuG i dSanpl es
provides a number of partially filled Sudoku puzzles for demonstration purposes.

Package or g. dr ool s. exanpl es. sudoku. r ul es contains a utility class with a method for compil-
ing DRL files.

The package org. drool s. exanpl es. sudoku contains a set of classes implementing the ele-
mentary Cel | object and its various aggregations: the Cel | Fi | e subtypes Cel | Row and Cel | -
Col as well as Cel | Sgr, all of which are subtypes of Cel | G oup. It's interesting to note that
Cel | and Cel | Gr oup are subclasses of Set O Ni ne, which provides a property f r ee with the type
Set <I nt eger >. For a Cel | it represents the individual candidate set; for a Cel | Gr oup the set is
the union of all candidate sets of its cells, or, simply, the set of digits that still need to be allocated.

With 81 Cel | and 27 Cel | G oup objects and the linkage provided by the Cel | properties cel | Row,
cel I Col and cel | Sqr and the Cel | G- oup property cel | s, a list of Cel | objects, it is possible to
write rules that detect the specific situations that permit the allocation of a value to a cell or the
elimination of a value from some candidate set.

An object of class Set ti ng is used for triggering the operations that accompany the allocation of
a value: its removal from the candidate sets of sibling cells and associated cell groups. Moreover,
the presence of a Set ti ng fact is used in all rules that should detect a new situation; this is to
avoid reactions to inconsistent intermediary states.

An object of class St eppi ng is used in a low priority rule to execute an emergency halt when
a "Step" does not terminate regularly. This indicates that the puzzle cannot be solved by the
program.

The class or g. dr ool s. exanpl es. sudoku. SudokuExanpl e implements a Java application com-
bining the components described.

20.9.4. Sudoku Validator Rules (validate.drl)

Validation rules detect duplicate numbers in cell groups. They are combined in an agenda group
which enables us to activate them, explicitly, after loading a puzzle.

649

Examples

The three rules "duplicate in cell..." are very similar. The first pattern locates a cell with an allocated
value. The second pattern pulls in any of the three cell groups the cell belongs to. The final pattern
would find a cell (other than the first one) with the same value as the first cell and in the same
row, column or square, respectively.

Rule "terminate group" fires last. It prints a message and calls halt.

20.9.5. Sudoku Solving Rules (sudoku.drl)

There are three types of rules in this file: one group handles the allocation of a number to a cell,
another group detects feasible allocations, and the third group eliminates values from candidate
sets.

Rules "set a value", "eliminate a value from Cell" and "retract setting" depend on the presence of a
Set t i ng object. The first rule handles the assignment to the cell and the operations for removing
the value from the "free" sets of the cell's three groups. Also, it decrements a counter that, when
zero, returns control to the Java application that has called fireuntil Hal t (). The purpose of
rule "eliminate a value from Cell" is to reduce the candidate lists of all cells that are related to the
newly assigned cell. Finally, when all eliminations have been made, rule "retract setting" retracts
the triggering Set t i ng fact.

There are just two rules that detect a situation where an allocation of a number to a cell is possible.
Rule "single" fires for a Cel | with a candidate set containing a single number. Rule "hidden single"
fires when there is no cell with a single candidate but when there is a cell containing a candidate
but this candidate is absent from all other cells in one of the three groups the cell belongs to. Both
rules create and insert a Set t i ng fact.

Rules from the largest group of rules implement, singly or in groups of two or three, various solving
techniques, as they are employed when solving Sudoku puzzles manually.

Rule "naked pair" detects identical candidate sets of size 2 in two cells of a group; these two
values may be removed from all other candidate sets of that group.

A similar idea motivates the three rules "hidden pair in..."; here, the rules look for a subset of two
numbers in exactly two cells of a group, with neither value occurring in any of the other cells of this
group. This, then, means that all other candidates can be eliminated from the two cells harbouring
the hidden pair.

A pair of rules deals with "X-wings" in rows and columns. When there are only two possible cells
for a value in each of two different rows (or columns) and these candidates lie also in the same
columns (or rows), then all other candidates for this value in the columns (or rows) can be elimi-
nated. If you follow the pattern sequence in one of these rules, you will see how the conditions
that are conveniently expressed by words such as "same" or "only" result in patterns with suitable
constraints or prefixed with "not".

The rule pair "intersection removal..." is based on the restricted occurrence of some number within
one square, either in a single row or in a single column. This means that this number must be in

650

Examples

one of those two or three cells of the row or column; hence it can be removed from the candidate
sets of all other cells of the group. The pattern establishes the restricted occurrence and then fires
for each cell outside the square and within the same cell file.

These rules are sufficient for many but certainly not for all Sudoku puzzles. To solve very difficult
grids, the rule set would need to be extended with more complex rules. (Ultimately, there are
puzzles that cannot be solved except by trial and error.)

20.10. Number Guess

Narme: Nunber Cuess

Mai n cl ass: org. drool s. exanpl es. nunber guess. Nunber GuessExanpl e

Mbdul e: drool sj bpmintegration-exanples (Note: this is in a different downl oad, the drool sjbpm
integration downl oad.)

Type: Java application

Rul es file: NunberGuess. drl

Obj ective: Denpbnstrate use of Rule Flow to organi se Rules

The "Number Guess" example shows the use of Rule Flow, a way of controlling the order in which
rules are fired. It uses widely understood workflow diagrams for defining the order in which groups
of rules will be executed.

Example 20.67. Creating the Number Guess RuleBase:
NumberGuessExample.main() - part 1

final Know edgeBuil der kbuil der = Know edgeBui | der Fact ory. newkKnow edgeBui | der () ;
kbui | der. add(Resour ceFactory. newCl assPat hResour ce("Nunber Guess.drl",
Shoppi ngExanpl e. cl ass),
Resour ceType. DRL);
kbui | der . add(Resour ceFact ory. newd assPat hResour ce("Nunber Guess. rf",
Shoppi ngExanpl e. cl ass),
Resour ceType. DRF) ;

final Know edgeBase kbase = Know edgeBaseFact ory. newkKnow edgeBase() ;
kbase. addKnow edgePackages(kbui | der. get Know edgePackages());

The creation of the package and the loading of the rules (using the add() method) is the same as
the previous examples. There is an additional line to add the Rule Flow (Nunber Guess. r f), which
provides the option of specifying different rule flows for the same Knowledge Base. Otherwise,
the Knowledge Base is created in the same manner as before.

Example 20.68. Starting the RuleFlow: NumberGuessExample.main() - part
2

final Stateful Know edgeSessi on ksessi on = kbase. newsSt at ef ul Knowl edgeSessi on() ;

651

Examples

Know edgeRunt i neLogger | ogger =
Know edgeRunt i neLogger Fact ory. newFi | eLogger (ksessi on, "l og/ nunber guess");

ksession.insert(new GaneRul es(100, 5));
ksession.insert(new RandomNunber ());
ksession.insert(new Game());

ksession. start Process("Number Cuess");
ksession.fireAl |l Rul es();

| ogger . cl ose();

ksessi on. di spose();

Once we have a Knowledge Base, we can use it to obtain a Stateful Session. Into our session we
insert our facts, i.e., standard Java objects. (For simplicity, in this sample, these classes are all con-
tained within our Nunber GuessExanpl e. j ava file. Class GaneRul es provides the maximum range
and the number of guesses allowed. Class Random\Nunber automatically generates a number be-
tween 0 and 100 and makes it available to our rules, by insertion via the get Val ue() method.
Class Gane keeps track of the guesses we have made before, and their number.

Note that before we call the standard fireAl | Rul es() method, we also start the process that
we loaded earlier, via the st art Process() method. We'll learn where to obtain the parameter we
pass ("Number Guess", i.e., the identifier of the rule flow) when we talk about the rule flow file and
the graphical Rule Flow Editor below.

Before we finish the discussion of our Java code, we note that in some real-life application we
would examine the final state of the objects. (Here, we could retrieve the number of guesses, to
add it to a high score table.) For this example we are content to ensure that the Working Memory
session is cleared by calling the di spose() method.

[select

=
() Marquee

= Connection Creation
= Components +
2 start

End

() RuleFlowGroup

=4 split

= Join

(7) Milestone

=2 SubFlow

{i} Action

{:ﬁ[— Guess Carrect Mo more Guesses

Guess incorrect

Figure 20.23. RuleFlow for the NumberGuess Example

652

Examples

If you open the Nunber Guess. rf file in the Drools IDE (provided you have the JBoss Rules ex-
tensions installed correctly in Eclipse) you should see the above diagram, similar to a standard
flowchart. Its icons are similar (but not exactly the same) as in the JBoss jBPM workflow product.
Should you wish to edit the diagram, a menu of available components should be available to the
left of the diagram in the IDE, which is called the palette. This diagram is saved in XML, an (almost)
human readable format, using XStream.

If it is not already open, ensure that the Properties View is visible in the IDE. It can be opened by
clicking "Window", then "Show View" and "Other", where you can select the "Properties"” view. If
you do this before you select any item on the rule flow (or click on the blank space in the rule flow)
you should be presented with the following set of properties.

[£! Problems [[2. Declaration € Progress | 4" Search | & Console | =l Properties 2 (Bl =2 v°=0
Property Value

Id MNumber Guess

Name Number Guess

Router Layout Shortest Path

Version

Figure 20.24. Properties for the Number Guess Rule Flow

Keep an eye on the Properties View as we progress through the example's rule flow, as it presents
valuable information. In this case, it provides us with the identification of the Rule Flow Process
that we used in our earlier code snippet, when we called sessi on. st art Process() .

In the "Number Guess" Rule Flow we encounter several node types, many of them identified by
an icon.

« The Start node (white arrow in a green circle) and the End node (red box) mark beginning and
end of the rule flow.

« A Rule Flow Group box (yellow, without an icon) represents a Rule Flow Groups defined in our
rules (DRL) file that we will look at later. For example, when the flow reaches the Rule Flow
Group "Too High", only those rules marked with an attribute of r ul ef | ow group "Too Hi gh"
can potentially fire.

 Action nodes (yellow, cog-shaped icon) perform standard Java method calls. Most action nodes
in this example call Syst em out . pri ntl n(), indicating the program's progress to the user.

 Split and Join Nodes (blue ovals, no icon) such as "Guess Correct?" and "More guesses Join"
mark places where the flow of control can split, according to various conditions, and rejoin,
respectively

* Arrows indicate the flow between the various nodes.

653

Examples

The various nodes in combination with the rules make the Number Guess game work. For exam-
ple, the "Guess" Rule Flow Group allows only the rule "Get user Guess" to fire, because only that
rule has a matching attribute of r ul ef | ow gr oup " Guess".

Example 20.69. A Rule firing only at a specific point in the Rule Flow:
NumberGuess.drl

rule "CGet user CQuess"
rul ef | owgroup "Quess"
no-1 oop
when
$r : RandomNunber ()
rules : GaneRul es(allowed : allowedGuesses)
game : Gane(guessCount < allowed)
not (Quess())
then
Systemout.println("You have " + (rules.all owedGuesses - gane. guessCount)
+ " out of " + rules.allowedCGuesses
+ " guesses |left.\nPlease enter your guess fromO to "
+ rul es. maxRange);
br = new BufferedReader (new | nput StreanReader(Systemin));
i = br.readLine();
modi fy (game) { guessCount = gane.guessCount + 1 }
insert(new Guess(i));
end

The rest of this rule is fairly standard. The LHS section (after when) of the rule states that it will
be activated for each RandomNunber object inserted into the Working Memory where guessCount
is less than al | onedGuesses from the GaneRul es object and where the user has not guessed
the correct number.

The RHS section (or consequence, after t hen) prints a message to the user and then awaits
user input from Syst em i n. After obtaining this input (the r eadLi ne() method call blocks until
the return key is pressed) it modifies the guess count and inserts the new guess, making both
available to the Working Memory.

The rest of the rules file is fairly standard: the package declares the dialect as MVEL, and various
Java classes are imported. In total, there are five rules in this file:

1. Get User Guess, the Rule we examined above.

2. A Rule to record the highest guess.

3. A Rule to record the lowest guess.

4. A Rule to inspect the guess and retract it from memaory if incorrect.

5. A Rule that notifies the user that all guesses have been used up.

654

Examples

One point of integration between the standard Rules and the RuleFlow is via the r ul ef | ow gr oup
attribute on the rules, as discussed above. A second point of integration between the rules (.drl) file
and the Rules Flow .rf files is that the Split Nodes (the blue ovals) can use values in the Working
Memory (as updated by the rules) to decide which flow of action to take. To see how this works,
click on the "Guess Correct Node"; then within the Properties View, open the Constraints Editor
by clicking the button at the right that appears once you click on the "Constraints" property line.
You should see something similar to the diagram below.

- @ Edit Constraints lihj 1
To node Guess Correct: correct E
To node Too Low: too low E
To node Too High: too high E

OK | | Cancel
—)

Figure 20.25. Edit Constraints for the "Guess Correct" Node

Click on the "Edit" button beside "To node Too High" and you'll see a dialog like the one below.
The values in the "Textual Editor" window follow the standard rule format for the LHS and can
refer to objects in Working Memory. The consequence (RHS) is that the flow of control follows
this node (i.e., "To node Too High") if the LHS expression evaluates to true.

655

Examples

@ Constraint editor

'| Name: too high

Priority: 1

] Always true

Textual Editor

l RandomMNumber(randomValue : value) &&
Guess(value = randomValue)

{ OK J ‘ Cancel

Figure 20.26. Constraint Editor for the "Guess Correct” Node: value too high

Since the file Nunber Guess. j ava contains a mai n() method, it can be run as a standard Java
application, either from the command line or via the IDE. A typical game might result in the inter-
action below. The numbers in bold are typed in by the user.

Example 20.70. Example Console output where the Number Guess Example
beat the human!

You have 5 out of 5 guesses left.Please enter your guess fromO to 100
| eft. Pl ease enter your guess fromO to
50

Your guess was too high

You have 4 out of 5 guesses left.

Pl ease enter your guess fromO to 100
25

Your guess was too | ow

You have 3 out of 5 guesses left.

Pl ease enter your guess fromO to 100
37

Your guess was too | ow

656

Examples

You have 2 out of 5 guesses left.

Pl ease enter your guess fromO to 100
44

Your guess was too |ow

You have 1 out of 5 guesses left.

Pl ease enter your guess fromO to 100
47

Your guess was too | ow

You have no nore guesses

The correct guess was 48

A summary of what is happening in this sample is:

. The mai n() method of Nunber GuessExanpl e. j ava loads a Rule Base, creates a Stateful Ses-
sion and inserts Ganme, GaneRul es and Random\unber (containing the target number) objects
into it. The method also sets the process flow we are going to use, and fires all rules. Control
passes to the Rule Flow.

. File Nunber Guess. r f, the Rule Flow, begins at the "Start" node.
. Control passes (via the "More guesses" join node) to the Guess node.

. At the Guess node, the appropriate Rule Flow Group ("Get user Guess") is enabled. In this
case the Rule "Guess" (in the Nunber Guess. dr | file) is triggered. This rule displays a message
to the user, takes the response, and puts it into Working Memory. Flow passes to the next Rule
Flow Node.

. At the next node, "Guess Correct", constraints inspect the current session and decide which
path to take.

If the guess in step 4 was too high or too low, flow proceeds along a path which has an action
node with normal Java code printing a suitable message and a Rule Flow Group causing a
highest guess or lowest guess rule to be triggered. Flow passes from these nodes to step 6.

If the guess in step 4 was right, we proceed along the path towards the end of the Rule Flow.
Before we get there, an action node with normal Java code prints a statement "you guessed
correctly”. There is a join node here (just before the Rule Flow end) so that our no-more-guesses
path (step 7) can also terminate the Rule Flow.

. Control passes as per the Rule Flow via a join node, a guess incorrect Rule Flow Group (trig-
gering a rule to retract a guess from Working Memory) onto the "More guesses" decision node.

. The "More guesses" decision node (on the right hand side of the rule flow) uses constraints,
again looking at values that the rules have put into the working memory, to decide if we have
more guesses and if so, goto step 3. If not, we proceed to the end of the rule flow, via a Rule
Flow Group that triggers a rule stating "you have no more guesses".

. The loop over steps 3 to 7 continues until the number is guessed correctly, or we run out of
guesses.

657

Examples

20.11. Conway's Game Of Life

Nanme: Conway's Ganme O Life
Mai n cl ass: org. drool s. exanpl es. conway. ConwayAgendaG oupRun
or g. drool s. exanpl es. conway. ConwayRul eFl owG oupRun
Mbdul e: drool sj bpmintegration-exanples (Note: this is in a different downl oad, the drool sjbpm
integration downl oad.)
Type: Java application
Rules file: conway-rul efl ow. drl conway-agendagroup. drl
Obj ective: Denpnstrates 'accunulate', 'collect' and 'froni

Conway's Game Of Life, described in http://en.wikipedia.org/wiki/Conway's_Game_of_Life and in
http://www.math.com/students/wonders/life/life.html, is a famous cellular automaton conceived in
the early 1970's by the mathematician John Conway. While the system is well known as "Conway's
Game Of Life", it really isn't a game at all. Conway's system is more like a simulation of a form
of life. Don't be intimidated. The system is terribly simple and terribly interesting. Math and Com-
puter Science students alike have marvelled over Conway's system for more than 30 years now.
The application presented here is a Swing-based implementation of Conway's Game of Life. The
rules that govern the system are implemented as business rules using Drools. This document will
explain the rules that drive the simulation and discuss the Drools parts of the implementation.

We'll first introduce the grid view, shown below, designed for the visualisation of the game, showing
the "arena" where the life simulation takes place. Initially the grid is empty, meaning that there are
no live cells in the system. Each cell is either alive or dead, with live cells showing a green ball.
Preselected patterns of live cells can be chosen from the "Pattern” drop-down list. Alternatively,
individual cells can be doubled-clicked to toggle them between live and dead. It's important to
understand that each cell is related to its neighboring cells, which is fundamental for the game's
rules. Neighbors include not only cells to the left, right, top and bottom but also cells that are
connected diagonally, so that each cell has a total of 8 neighbors. Exceptions are the four corner
cells which have only three neighbors, and the cells along the four border, with five neighbors each.

658

http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://www.math.com/students/wonders/life/life.html

Examples

i Conway's Game OF Life = |EI[5|

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originally
conceived by John Conway in the early 1970°s. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the "business rules" that constrain the game.

Select a predefined patte_rn from the list below or use the mouse
to interactively define a starting orid by clicking on cells in
the grid to bring them to life.

Click the "Next Generation™ button to iterate through generations
one at a time or click the "Start™ button to let the system evolve
itself.

I I I
10 10 10 1 1 N |—|_|_|_|—|

1 Il S0
EEEEEEEEEEE patem: | 7|
"I | FI'—I EElEEEEEREE

I——I I—I—I I—I—I HEEEEEE
0 1 5 1 55 11 51 5

I e 5 6 S S [Y S 3
B I—I—I [I—I—I [I—I—I || I—I—I [I—I—I {11 | HER D D || galait || S

Figure 20.27. Conway's Game of Life: Starting a new game

So what are the basic rules that govern this game? Its goal is to show the development of a
population, generation by generation. Each generation results from the preceding one, based on
the simultaneous evaluation of all cells. This is the simple set of rules that govern what the next
generation will look like:

« If alive cell has fewer than 2 live neighbors, it dies of loneliness.
« If alive cell has more than 3 live neighbors, it dies from overcrowding.
« If a dead cell has exactly 3 live neighbors, it comes to life.

That is all there is to it. Any cell that doesn't meet any of those criteria is left as is for the next
generation. With those simple rules in mind, go back and play with the system a little bit more and
step through some generations, one at a time, and notice these rules taking their effect.

The screenshot below shows an example generation, with a number of live cells. Don't worry about
matching the exact patterns represented in the screen shot. Just get some groups of cells added
to the grid. Once you have groups of live cells in the grid, or select a pre-designed pattern, click
the "Next Generation" button and notice what happens. Some of the live cells are killed (the green
ball disappears) and some dead cells come to life (a green ball appears). Step through several
generations and see if you notice any patterns. If you click on the "Start" button, the system will
evolve itself so you don't need to click the "Next Generation" button over and over. Play with the
system a little and then come back here for more details of how the application works.

659

Examples

& Conway's Game OF Life ;IEIEI

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originally
conceired by John Conway in the early 1970°s. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the "business rules" that constrain the game.

Select a predefined patte_rn from the list below or use the mouse
to interactively define a starting grid by clicking on cells in
the grid to bring them to life.

Click the "Next Generation™ button to iterate through generations

one at a time or click the “Start" button to let the system evolve
itself.

Pattern : =

| Next Generation || Start || Clear

Figure 20.28. Conway's Game of Life: A running game

Now lets delve into the code. As this is an advanced example we'll assume that by now you
know your way around the Drools framework and are able to connect the presented highlight,
so that we'll just focus at a high level overview. The example has two ways to execute, one way
uses Agenda Groups to manage execution flow, and the other one uses Rule Flow Groups to
manage execution flow. These two versions are implemented in ConwayAgendaG oupRun and
ConwayRul eFl owGr oupRun, respectively. Here, we'll discuss the Rule Flow version, as it's what
most people will use.

All the Cel | objects are inserted into the Session and the rules in the rul ef | ow gr oup "regis-
ter neighbor" are allowed to execute by the Rule Flow process. This group of four rules creates
Nei ghbor relations between some cell and its northeastern, northern, northwestern and western
neighbors. This relation is bidirectional, which takes care of the other four directions. Border cells
don't need any special treatment - they simply won't be paired with neighboring cells where there
isn't any. By the time all activations have fired for these rules, all cells are related to all their neigh-
boring cells.

Example 20.71. Conway's Game of Life: Register Cell Neighbour relations

rule "register north east” rul ef | ow-group "register nei ghbor"when $cell: Cell($row : row,
$col : col) $northEast : Cell(row == ($row - 1), col == ($col + 1))

t hen insert(new Neighbor($cell, $northEast)); insert(new
Nei ghbor ($northEast, $cell)); endrul e "register north" rul ef | ow-group "register
nei ghbor" when $cell: Cell($row : row, $col : col) $north : Cell(row == ($row -
1), col == $col) t hen i nsert(new Nei ghbor($cell, $north)); insert(new
Nei ghbor ($north, $cell)); endrul e "register north west" rul ef | ow group "register
nei ghbor "when $cell: Cell($row: row, $col : col) $northWest : Cell (row ==
($row- 1), col == ($col - 1)) t hen i nsert(new Nei ghbor($cell,
$northvest)); insert(new Nei ghbor($northwest, $cell)); endrul e "register west"

rul ef | ow group "regi ster nei ghbor"when $cell: Cell($row : row, $col : col)

660

Examples

$west : Cell(row == $row, col == ($col - 1)) t hen

i nsert(new Nei ghbor($cell, $west)); insert(new Nei ghbor($west, $cell)); end
east" rul ef | owgroup "register
nei ghbor "when $cell: Cell($row : row, $col : col)

$northEast : Cell(row == ($row - 1), col == ($col + 1))

t hen

insert(new Nei ghbor($cell, $northEast)

) i nsert(new Nei ghbor($northEast, $cell));

endrul e "register

north" rul ef | owgroup "register nei ghbor"
when $cell: Cell($row: row, $col : col)

$north : Cell(row == ($row - 1), col == $col)
t hen

i nsert(new Nei ghbor($cell, $north)
) i nsert(new Nei ghbor($north, $cell));

endrul e "register north

west " rul ef | ow-group "register
nei ghbor "when $cell: Cell($row: row, $col : col)
$northWest : Cell(row == ($row - 1), col == ($col - 1))
t hen

insert(new Nei ghbor($cell, $northWest)
) i nsert(new Nei ghbor($northWest, $cell));

endrul e "register

west " rul ef | owgroup "register
nei ghbor "when $cell: Cell($row : row, $col : col)
$west : Cell(row == $row, col == ($col - 1))
t hen

insert(new Nei ghbor($cell, $west)
); i nsert(new Nei ghbor($west, $cell));

Once all the cells are inserted, some Java code applies the pattern to the grid, setting certain
cells to Live. Then, when the user clicks "Start" or "Next Generation", it executes the "Generation"
ruleflow. This ruleflow is responsible for the management of all changes of cells in each generation
cycle.

661

Examples

[:3 Select

F=1
L Margquee

—+ Zonnection Creation
|~ Compaonents *
i Start

End

() RuleFlowGraup

2 split

=+ Join

(7) Mileskone

= SubFlow

{@} Ackion

Figure 20.29. Conway's Game of Life: rule flow "Generation™"

2 start

calculate
evaluate

reset calculate

End

Examples

The rule flow process first enters the "evaluate" group, which means that any active rule in the
group can fire. The rules in this group apply the Game-of-Life rules discussed in the beginning of
the example, determining the cells to be killed and the ones to be given life. We use the "phase”
attribute to drive the reasoning of the Cell by specific groups of rules; typically the phase is tied
to a Rule Flow Group in the Rule Flow process definition. Notice that it doesn't actually change
the state of any Cel | objectss at this point; this is because it's evaluating the grid in turn and it
must complete the full evaluation until those changes can be applied. To achieve this, it sets the
cell to a "phase" which is either Phase. KI LL or Phase. Bl RTH, used later to control actions applied
to the Cel I object.

Example 20.72. Conway's Game of Life: Evaluate Cells with state changes

rule "Kill The Lonely" rul ef | owgroup "eval uat e" no-1 oopwhen// A live cell has fewer than
2 l'ive nei ghbors theCell: Cell(liveNeighbors < 2, cell State == Cel | State. LI VE,
phase == Phase. EVALUATE)t hen nmodi fy(theCell){ set Phase(Phase.KILL); }endrul e
"Kill The Overcrowded" rul ef | owgroup "eval uat e" no-| oopwhen// A live cell has nore than
3 l'ive nei ghbors theCell: Cell(liveNeighbors >3, cell State == Cel | State. LI VE,
phase == Phase. EVALUATE)t hen modi fy(theCell){ set Phase(Phase.KILL); }endrul e
"Gve Birth" rul ef | ow group "eval uate" no-| oopwhen// A dead cell has 3 |ive neighbors
theCell: Cell(liveNeighbors == 3, cell State == Cel | St at e. DEAD, phase ==
Phase. EVALUATE)t hen nodi fy(theCell){ t heCel | . set Phase(Phase. BIRTH); }end
ly" rul ef | ow group
"eval uat e" no-
| oop

when// A live cell has fewer than 2 live

nei ghbor s theCell: Cell(liveNeighbors < 2, cellState ==
Cel | St ate. LI VE, phase == Phase. EVALUATE

)

t hen nodi fy(theCell)

{ set Phase(Phase. KI LL

)i

}

endrule "Kill The

Over cr owded" rul ef | ow group

"eval uat e" no-

| oop

when// A live cell has nore than 3 live

nei ghbors theCell: Cell(liveNeighbors > 3, cell State ==
Cel | State. LI VE, phase == Phase. EVALUATE
)

t hen nmodi fy(theCell)

{ set Phase(Phase. Kl LL

DE

}

endrule "G ve

Birth" rul ef I ow group

"eval uat e" no-

| oop

when// A dead cell has 3 live

nei ghbors theCell: Cell(IiveNeighbors == 3, cell State ==
Cel | St at e. DEAD, phase == Phase. EVALUATE

)
t hen nmodi fy(theCell)

663

Examples

—_~

t heCel | . set Phase(Phase. Bl RTH

Once all Cel | objects in the grid have been evaluated, we first clear any calculation activations that
occurred from any previous data changes. This is done via the "reset calculate” rule, which clears
any activations in the "calculate" group. We then enter a split in the rule flow which allows any
activations in both the "kill* and the "birth" group to fire. These rules are responsible for applying
the state change.

Example 20.73. Conway's Game of Life: Apply the state changes

rule "reset calculate" rul efl ow-group "reset cal cul ate"whenthen Wor ki ngMenory wm =
dr ool s. get Wor ki ngMenory(); wm cl ear Rul eFl owGroup("cal cul ate");endrule "Kill" rul ef | ow

group "kill" no- | oopwhen theCell: Cell(phase == Phase.KILL)then modi fy(theCell)

{ setCel | State(Cell State. DEAD), set Phase(Phase. DONE); }end rule
"birth" rul ef | ow-group "birth" no- | oopwhen theCel l: Cell(phase == Phase. Bl RTH)t hen
nmodi fy(theCell){ setCell State(Cell State.LIVE), set Phase(Phase. DONE) ; }end

cal cul ate" rul ef | owgroup

"reset

cal cul at e"whent hen Wor ki ngMenory wm

= drool s. get Wor ki ngMenory(); wm cl ear Rul eFl owGr oup(

"cal cul ate"
); end

rule "kill" rul ef | ow

group "kill"

no- | oopwhen theCell: Cell(phase ==

Phase. KI LL
)then nodi fy(theCell
){ set Cel | St at e(
Cel | State. DEAD), set Phase(Phase. DONE) ;
}
end
rule "birth" rul ef | ow
group "birth"

no- | oopwhen theCell: Cell(phase ==
Phase. Bl RTH

)t hen nmodi fy(theCell

){ set Cel | St at e(
Cell State.LIVE), set Phase(
Phase. DONE) ;

At this stage, a number of Cel | objects have been modified with the state changed to either LI VE
or DEAD. Now we get to see the power of the Nei ghbor facts defining the cell relations. When
a cell becomes live or dead, we use the Nei ghbor relation to iterate over all surrounding cells,

664

Examples

increasing or decreasing the | i veNei ghbor count. Any cell that has its count changed is also
set to to the EVALUATE phase, to make sure it is included in the reasoning during the evaluation
stage of the Rule Flow Process. Notice that we don't have to do any iteration ourselves; simply
by applying the relations in the rules we make the rule engine do all the hard work for us, with a
minimal amount of code. Once the live count has been determined and set for all cells, the Rule
Flow Process comes to and end. If the user has initially clicked the "Start" button, the engine will
restart the rule flow; otherwise the user may request another generation.

Example 20.74. Conway's Game of Life: Evaluate cells with state changes

rule "Calculate Live" rul ef | owgroup "cal cul ate" | ock-on-active when t heCel | :

Cell(cellState == Cell State. LIVE) Nei ghbor (cell == theCell, $neighbor : neighbor) then
modi fy($nei ghbor) { set Li veNei ghbors($nei ghbor . get Li veNei ghbors() + 1),
set Phase(Phase. EVALUATE); }end rule "Calculate Dead" rul ef | ow group

"cal cul ate" | ock-on-active when theCell: Cell(cellState == Cell State. DEAD)
Nei ghbor (cell == theCell, $neighbor : neighbor)then nmodi fy($nei ghbor) {

set Li veNei ghbor s($nei ghbor . get Li veNei ghbors() - 1), set Phase(Phase. EVALUATE); }end
Live" rul ef | ow group

"cal cul ate" | ock-on-active

when theCell: Cell(cellState == Cel |l State. LI VE
) Nei ghbor (cell == theCell, $neighbor : nei ghbor
)
t hen nodi fy($nei ghbor
){ set Li veNei ghbor s($nei ghbor. get Li veNei ghbors() + 1
), set Phase(Phase. EVALUATE);

end rule "Calcul ate
Dead" rul ef | owgroup
"cal cul ate" | ock-on-active

when theCell: Cell(cellState == Cel | St at e. DEAD
) Nei ghbor (cell == theCell, $neighbor : nei ghbor

)t hen nmodi fy($nei ghbor
){ set Li veNei ghbor s($nei ghbor. get Li veNei ghbors() - 1
), set Phase(Phase. EVALUATE

D
}

20.12. Invaders

A simplifed version of the Space Invaders game. Use the keys Z and K, to move left and right and
M to fire a misile. The example is built up over 6 projects, each adding slightly more complexity
to the last.

Nanme: Exanpl e | nvaders
Mai n cl ass: org.drool s. ganes. i nvaders. | nvader s1Mai n
Mai n cl ass: org.drool s. ganes. i nvaders. | nvader s2Mai n

665

Examples

Mai n cl ass: org.drool s. ganes. i nvaders. | nvader s3Mai n
Mai n cl ass: org.drool s. ganes. i nvaders. | nvader s4Mai n
Mai n cl ass: org.drool s. ganes. i nvaders. | nvader s5Mai n
Mai n cl ass: org.drool s. ganes. i nvaders. | nvader s6Mai n

Figure 20.30. Pong Screenshot

20.12.1. Invaders1Main

Invaders1Main creates the frame and attaches the KeyListener, feeding key events into the en-
gine. It also sets up the main game loop which can be found in "Main.drl". The typical convention
used through out the example is to have one agenda group per file, and all rules in that file in
the same agenda group.

The Run fact is used to drive the repeat of the Game loop. Initially there are only one groups that
is evaluated, Keys. The "keys.drl" file is shared by several examples, and illustrates rule re-use
across multipel projects.

666

Examples

Example 20.75. Game Loop

rule "init" when
t hen
insert(new Run());
set Focus("Init")
end

rul e GaneLoop when

r @ Run()
then

set Focus("Keys")
end

rul e Draw when

r : Run()
then

ui . show()

modify(r) {} // force |oop
end

20.12.2. Invaders2Main

Invaders2Main adds the "Draw" stage to the game loop and draws the SpaceShip

Example 20.76. Game Loop

rul e GaneLoop when
r @ Run()
then
set Focus("Draw');
set Focus("Keys")
end

20.12.3. Invaders3Main

Invaders3Main adds move controls to the spaceship, notice the ship moves out of the boundaries
of the screen. KeyPressed is detected and that sets a delta of dx on the ship direction. That delta
is then repeated applied to the x position of the ship

Example 20.77. Move Ship

rul e ShipDel taMovelLeft agenda-group "Myve" when

667

Examples

s : Ship()
KeyPressed(keyText == "Z")
then
modify(s) { dx = 0 - s.speed }

end

rul e ShipDeltaStopLeft agenda-group "Mve" when

s : Ship()
not KeyPressed(keyText == "Z")
t hen
mdify(s) { dx =0}

end

rul e Shi pMove agenda-group "Mve" when
s : Ship(dx I'=0)
Run()

then
mdify(s) { x =s.x + s.dx }

end

20.12.4. Invaders4Main

Invaders4Main adds boundari control to the ShipMove rule, so it doesn't move off the screen.
Notice the use of "@watch(!x)", this ensures that while the rule wil modify the x property, it will
not react to changes to x, which avoids recursion issues.

Example 20.78. Move Ship with Boundaries

rul e Shi pMove agenda-group "Mve" when
s : Ship(dx '=0, x +dx >0, x + dx + width < conf.w ndowNdth) @atch(!x)
Run()

t hen
mdify(s) { x =s.x + s.dx }

end

20.12.5. Invaders5Main
Invaders5Main updates the "Draw" group to draw 5 Invaders.
20.12.6. Invaders6Main

Invaders6Main adds a lot more meat. Pressing the "M" key fires a missile that travels up the
screen, while moving collision between the missile and the invader is checked.

668

Examples

20.12.7. Invaders4Main

Invaders4Main adds boundari control to the ShipMove rule, so it doesn't move off the screen.
Notice the use of "@watch(!x)", this ensures that while the rule wil modify the x property, it will
not react to changes to x, which avoids recursion issues.

Example 20.79. Fire Missile

rule InsertBull et agenda-group "Bullet" when

KeyPressed(keyText == "M)
s : Ship()
not Bullet()

then
b = new Bullet();
b.x = s.x + (s.width/2) - (b.width/2);
b.y = s.y - s.height - b.height;
b.wi dth = conf.bull et Wdth;
b. hei ght = conf. bul | et Hei ght
b.dy = 0 - conf.bull et Speed
insert(b);
end

rul e Bull et Move agenda-group "Bullet" when
b: Bullet(y >0) @watch(!y)
Run()

t hen
mdify(b) { y =b.y + b.dy }

end

rule Collision agenda-group "Bullet" when
b : Bullet() @atch(vy)
i @ Invader(x < b.x, x + wwdth > b.x, y > b.y)
Run()
t hen
modify(i) { alive = false }
end

20.13. Adventures with Drools

Based on the Adventure in Prolog, over at the Amzi website, http://www.amzi.com/Adventureln-
Prolog/, we started to work on a text adventure game for Drools. They are ideal as they can start
off simple and build in complexity and size over time, they also demonstrate key aspects of de-
clarative relational programming.

Nanme: Exanpl e Text Adventure
Mai n cl ass: org.drool s. ganes. advent ur e. Text Advent ure

669

http://www.amzi.com/AdventureInProlog/
http://www.amzi.com/AdventureInProlog/

Examples

The game allows you to play as the hero or the monster. If you click "New Window" you can open
one window as the hero and another as the monster, and play them both at the same time. The
game allows either character to move around rooms, pick up, drop or use things. Doors can be
locked and unlocked, by using the key on teh exit room, and the hero can kill the monster by using

the umbrella on the monster.

You can view the 8 minute demonstration and introduction for the example at http:/
downloads.jboss.org/drools/videos/text-adventures.swf. Be aware the video is now much older
than the current improved example.

H New Window

Events

ExitEvent{character=Character{id=8, name=hero} ,
room=Room{id=1, name=ground floor hallway} }
EnterEvent{character=Character{id=8, name=hero}
, rcom=Room{id=3, name=lounge} }
ExitEvent{character=Character{id=8, name=hero} ,
room=Room{id=3, name=lounge} }
EnterEvent{character=Character{id=8, name=hero}
, rcom=Room{id=1, name=ground floor hallway} }
ExitEvent{character=Character{id=8, name=hero} ,
room=Room{id=1, name=ground floor hallway} }
EnterEvent{character=Character{id=8, name=hero}
, room=Room{id=3, name=lounge} }
PickupEvent{character=Character{id=8,
name=hero}, thing=Item{id=9, name=umbrella} }
ExitEvent{character=Character{id=8, name=hero} ,
room=Room{id=3, name=lounge} }
EnterEvent{character=Character{id=8, name=hero}
, rcom=Room{id=1, name=ground floor hallway} }
ExitEvent{character=Character{id=8, name=hero} ,
room=Roomf{id=1, name=ground floor hallway} }

, room=Roomf{id=4, name=kitchen} }

EnterEvent{character=Character{id=8, name=hero}

Inventory
umbrella

QOutput

TOU Nave entered (e ground 1oor nanway
You have entered the lounge

You have picked up the umbrella

Unable to Execute Command: [class org.drools.games.adventures.model.MoveCommand,

Character{id=8, name=hero}]
You have entered the ground floor hallway

You have entered the kitchen

The basement Door is locked

value
100
100
100
100
100

Character

| Character{id=8, name=hero} 4| |property
strength
health
coiins
speed
mana

Actions

| Move | Things

[Pickup |

| Drop |

| Give |

| use |

| Look |

| send |

Exits
ground floor hallway

basement

Figure 20.31. Text Adventure Screenshot

20.13.1. Using the game.

Each action follows the constructor arguments of the associated Command java class.

Example 20.80. MoveCommand

@ropertyReactive

public class MveComrand ext ends Conmmand {

@osi tion(1)

private Character character;

@osi tion(2)

670

http://downloads.jboss.org/drools/videos/text-adventures.swf
http://downloads.jboss.org/drools/videos/text-adventures.swf

Examples

private Room room

publ i ¢ MoveCommand(Char acter character, Roomroon) {
this.character = character;
this.room= room

To issue a move action, select the "Move" button, then select the exit room. Notice when you
press "Move" it adds the text to the white bar at the bottom. When the exit room is selected, it
also is added to the white bar. Then press send and the game engine will execute the command.
Internally it uses reflection to instantiate the Command and insert it into the engine. If you select
incorrect arguments, such as pressing exits multiple times, the reflection will fail and you can
attempt it again.

Actions

Move Things Exits
lounge

Pick Up first floor hallway
kitchen

Drop

Give

Use

Look

Move kitchen

. .

Figure 20.32. Move Action

The Things list displays anything you can see in the room, not all things can be picked up. For
instance you can pick up the key and the torch, but not the monster. When something is picked up
it moves from the Things list to the Inventory List. The reverse is true when something is dropped.

Figure 20.33. Pickup Action

The key is in the office, move upstairs and into the office. Then pick up the key. Move back
downstairs and into the kitchen. Try and walk into the basement, notice it's locked.

Select the "Use" action, the select the key and then the basement exit. This will unlock the door
and you can now walk through.

To kill the monster pick up the umbrella from the lounge and then select "Use", then select the
imbrella and finally select the monster.

Don't forget to open a "New Window" to play as the monster, although you will not be able to exit
the basement until the hero has opened it with the key. The monster and the hero can also give
items to each other, moving items between each playsers inventory.

671

Examples

20.13.2. The code

The model is written in Java classes. Each classes uses @PropertyReactive and @Position.
@PropertyReactive allows control of which fields patterns react to, and @Position maps a field to
a argument position allowing positional as well as named arguments for patterns.

Example 20.81. Game World Data Example

@ropertyReactive
public class Thing {
@posi tion(0)

private long id;

@Position(1)
private String nang;

public Thing(long id, String nane) {

this.id =id;
t hi s. name = nane;

An MVEL data file is used to populate our world, see "data.mvel". You can edit this file to add new
rooms, items and characters, as well as locks for doors.

Example 20.82. Game World Data Example

roons = [
"basenent” : new Roon{"basenent"),
"l ounge" : new Roon{"l ounge"),
"kitchen" : new Roon{"kitchen"),
"ground floor hallway" : new Roon("ground floor hallway"),
"bedroont : new Roon("bedroont),
"of fice" : new Roon("office"),
"first floor hallway" : new Room("first floor hallway")

IE

doors = [
"d1" : new Door(roons["kitchen"], roons["basenent"]),
"d2" : new Door(roons["ground floor hallway"], roons["l|ounge"]),
"d4" : new Door(roons["ground floor hallway"], rooms["kitchen"]),
"d5" : new Door(roons["ground floor hallway"], rooms["first floor hallway"]),
"d8" : new Door(roons["first floor hallway"], roonms["bedrooni]),
"d9" : new Door(roons["first floor hallway"], roonms["office"])

I;

locations = [
"monster"” : new Location(characters["nmonster"], roons["basenent"]),

672

Examples

"hero" : new Location(characters["hero"], roons["ground floor hallway"]),
"unbrella" : new Location(itens["unbrella"], roons["lounge"]),
"keyl" : new Location(itens["keyl"], roons["office"])

The game creates commands, which it inserts into the engine. These commands are then used
to change the state of the world and that state is reflected back in the Ul. The commands can be
found in the "commands.drl" file. The following rule matches the MoveCommand and if it's valid
it will make the move happen.

Example 20.83. Move a Characters

rul e val i dMbve agenda-group "commands" when
nmc : MoveCommand(c¢ : character, r : room)
| : Location(thing == c, ltarget : target) @watch(!target)
?connect(d, r, Iltarget;)
then
exit = new ExitEvent(c, (Room |.target);
enter = new EnterEvent(c, r);

modify(|) { target =r };

insert(exit);
insert(enter);

nt. sessi on. channel s["out put"].send("You have entered the " + |.target.name + "\n");
end

In the above rules notice the "connect" pattern, this is actually a query. In the MVEL data file doors
are only described one way, we can use a query to check connections bi-directionally. The queries
can be found in the "queries.drl" file.

Example 20.84. connect

query connect(Door $d, Room $x, Room $y)
$d : = Door ($id, $nane, $x, $y;)
or
$d : =Door ($id, $nanme, 3By, $x;)

end

The Ul has its list boxes populated by rules found in "UiView.drl", those rules in turn use queries.
Here is how the "Things" list box is populated, when ever the world changes.

673

Examples

Example 20.85. Update the Ul

rul e updat eThings salience 5 when
session : UserSession($char : character)
things($char, $things;)
t hen
sessi on. channel s["t hi ngs"].send($things);
end

query things(Character $char, List $things)
$char := Character()
Locati on($char, $room)
$things := List() fromaccunmul ate(Location($thing, $room thing != $char),
collectList($thing))
end

20.14. Pong

A Conversion for the classic game Pong. Use the keys A, Z and K, M. The ball should get faster
after each bounce.

Nanme: Exanpl e Pong
Mai n cl ass: org. drool s. ganes. pong. PongMai n

674

Examples

Figure 20.34. Pong Screenshot

20.15. Wumpus World

Nanme: Exanpl e Winpus World
Mai n cl ass: org. drool s. ganes. wunpus. WinpusWér | dMai n

Wumpus World is an Al example covered in the book "Artificial Intelligence : A Modern Approach”.
When the game first starts all the cells are greyed out. As you walk around they become visible.
The cave has pits, a wumpus and gold. When you are next to a pit you will feel a breeze, when
you are next to the wumpus you will smell a stench and see glitter when next to gold. The sensor
icons are shown above the move buttons. If you walk into a pit or the wumpus, you die. A more
detailed overview of Wumpus World can be found at http://www.cis.temple.edu/~giorgio/cis587/
readings/wumpus.shtml. A 20 minute video showing how the game is created and works is at http://
www.youtube.com/watch?v=4CvjKqUOEzM. [http://www.youtube.com/watch?v=4CvjKqUOEzM]

675

http://www.cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
http://www.cis.temple.edu/~giorgio/cis587/readings/wumpus.shtml
http://www.youtube.com/watch?v=4CvjKqUOEzM
http://www.youtube.com/watch?v=4CvjKqUOEzM
http://www.youtube.com/watch?v=4CvjKqUOEzM

Examples

International
Edition

Artificial Intelligence

A MODERN APPROACH

Third Edition

Stuart Russell
Peter Norvig

Stuart
Russell
PEARSON Paler
== = Norvig

. J

Figure 20.35. Wumpus World

676

Examples

|£| Display image - o=k
START | CAVE? | [] []
|
. @
Uy o0
v WL L1
Figure 20.36. Cave Screenshot
Cell Hero Wumpus Pitt GO'_d
int row int row int row int row int row
Int col Int col Int col Int col Int col
é AV 4 N
~BREEZEZ STENCH ~/GoLp \ \”
\ J \\ J \.

Figure 20.37. Signals Screenshot

677

Examples

rule "Smell Stench" when

$s @ Sensors()

th : Heraof)
Wumpus (row == (Sh.row + 1}, col == $h.col) or
Wumpus(row == (Sh.row - 1), col == Sh.col) or
Wumpus(row == $h.row, col == {($h.cecl + 1)) or
Wumpus(row == $h.row, col == {$h.cocl - 1))

then
insertLogical({ new SmellStench());
$s.amellStench = true;

end

Figure 20.38. Smell Stench

rule "Move Up" when

fmc : MoveCommand(move == Mowe.UP)
$h : Hero()
$c : Cell{row == (Sh.row + 1), col == Sh.col)

then
modify($h) { row = $h.row + 1 };
fc.setHidden(false);
retract ($mc);

end

rule "Wumpus Death” when
fg : GameData()

fh : Hero()
Wumpus(row == Sh.row, col == Sh.col)
then
$g.wumpusDeath = true;

end

Figure 20.39. Move Up, Wumpus Collision

20.16. Miss Manners and Benchmarking

Name: M ss Manners

Mai n cl ass: org. drool s. benchmar k. manner s. Manner sBenchmar k
Mbdul e: dr ool s- exanpl es

Type: Java application

678

Examples

Rules file: manners.drl
Obj ective: Advanced wal kt hrough on the Manners benchmark, covers Depth conflict resolution in
dept h.

20.16.1. Introduction

Miss Manners is throwing a party and, being a good host, she wants to arrange good seating. Her
initial design arranges everyone in male-female pairs, but then she worries about people have
things to talk about. What is a good host to do? She decides to note the hobby of each guest so
she can then arrange guests not only pairing them according to alternating sex but also ensuring
that a guest has someone with a common hobby, at least on one side.

Figure 20.40. Miss Manners' Guests

20.16.1.1. BenchMarking

Five benchmarks were established in the 1991 paper "Effects of Database Size on Rule System
Performance: Five Case Studies" by David Brant, Timothy Grose, Bernie Lofaso and Daniel P.
Miranker:

679

Examples

* Manners uses a depth-first search approach to determine the seating arrangements alternating
women and men and ensuring one common hobby for neighbors.

» Waltz establishes a three-dimensional interpretation of a line drawing by line labeling by con-
straint propagation.

« WaltzDB is a more general version of Waltz, supporting junctions of more than three lines and
using a database.

« ARP is aroute planner for a robotic air vehicle using the A* search algorithm to achieve minimal
cost.

« Weaver VLSI router for channels and boxes using a black-board technique.

Manners has become the de facto rule engine benchmark. Its behavior, however, is now well
known and many engines optimize for this, thus negating its usefulness as a benchmark which is
why Waltz is becoming more favorable. These five benchmarks are also published at the Univer-
sity of Texas http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/.

20.16.1.2. Miss Manners Execution Flow

After the first seating arrangement has been assigned, a depth-first recursion occurs which re-
peatedly assigns correct seating arrangements until the last seat is assigned. Manners uses a
Cont ext instance to control execution flow. The activity diagram is partitioned to show the relation
of the rule execution to the current Cont ext state.

680

http://www.cs.utexas.edu/ftp/pub/ops5-benchmark-suite/

Examples

START UP

ASSIGN SEATS

MAK PATH

CHECK DONE

Assign First Seat

%-| Assign Seat I

Make Path
o)

)

Path Dane

k

Are We Done Yet? '—

PRINT RESULTS

Has the last seat
bean assigned?

%@asull&

Figure 20.41. Manners Activity Diagram

20.16.1.3. The Data and Results

Before going deeper into the rules, let's first take a look at the asserted data and the resulting
seating arrangement. The data is a simple set of five guests who should be arranged so that sexes
alternate and neighbors have a common hobby.

The Data

The data is given in OPS5 syntax, with a parenthesized list of name and value pairs for each
attribute. Each person has only one hobby.

(guest (name n1) (sex m) (hobby h1))
(guest (name n2) (sex f) (hobby h1))
(guest (name n2) (sex f) (hobby h3))
(guest (name n3) (sex m) (hobby h3))
(guest (name n4) (sex m) (hobby h1))
(guest (name n4) (sex f) (hobby h2))

681

Examples

(guest (name n4) (sex f) (hobby h3))
(guest (name n5) (sex f) (hobby h2))
(guest (name nb) (sex f) (hobby h1))
(last_seat (seat 5))

The Results

Each line of the results list is printed per execution of the "Assign Seat" rule. They key bit to
notice is that each line has a "pid" value one greater than the last. (The significance of this will be
explained in the discussion of the rule "Assign Seating".) The "Is", "rs", "In" and "rn" refer to the left
and right seat and neighbor's name, respectively. The actual implementation uses longer attribute

names (e.g., | ef t Guest Name, but here we'll stick to the notation from the original implementation.

[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]

[Seating id=2, pid=1, done=false, Is=1, In=n5, rs=2, rn=n4]
[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]
[Seating id=4, pid=3, done=false, Is=3, rn=n3, rs=4, rn=n2]
[Seating id=5, pid=4, done=false, Is=4, In=n2, rs=5, rn=n1]

20.16.2. In depth Discussion

20.16.2.1. Cheating

Manners has been designed to exercise cross product joins and Agenda activities. Many people
not understanding this tweak the example to achieve better performance, making their port of the
Manners benchmark pointless. Known cheats or porting errors for Miss Manners are:

« Using arrays for a guests hobbies, instead of asserting each one as a single fact massively
reduces the cross products.

« Altering the sequence of data can also reduce the amount of matching, increasing execution
speed.

« It's possible to change the not Conditional Element so that the test algorithm only uses the
"first-best-match", which is, basically, transforming the test algorithm to backward chaining. The
results are only comparable to other backward chaining rule engines or ports of Manners.

« Removing the context so the rule engine matches the guests and seats prematurely. A proper
port will prevent facts from matching using the context start.

« It's possible to prevent the rule engine from performing combinatorial pattern matching.

« If no facts are retracted in the reasoning cycle, as a result of the not CE, the port is incorrect.

20.16.2.2. Conflict Resolution

The Manners benchmark was written for OPS5 which has two conflict resolution strategies, LEX
and MEA. LEX is a chain of several strategies including salience, recency and complexity. The

682

Examples

recency part of the strategy drives the depth first (LIFO) firing order. The CLIPS manual documents
the Recency strategy as follows:

Every fact and instance is marked internally with a "time tag" to indicate its relative
recency with respect to every other fact and instance in the system. The pattern
entities associated with each rule activation are sorted in descending order for
determining placement. An activation with a more recent pattern entity is placed
before activations with less recent pattern entities. To determine the placement
order of two activations, compare the sorted time tags of the two activations one
by one starting with the largest time tags. The comparison should continue until
one activation’s time tag is greater than the other activation’s corresponding time
tag. The activation with the greater time tag is placed before the other activation
on the agenda. If one activation has more pattern entities than the other activation
and the compared time tags are all identical, then the activation with more time
tags is placed before the other activation on the agenda.

—CLIPS Reference Manual

However Jess and CLIPS both use the Depth strategy, which is simpler and lighter, which Drools
also adopted. The CLIPS manual documents the Depth strategy as:

Newly activated rules are placed above all rules of the same salience. For exam-
ple, given that fact-a activates rule-1 and rule-2 and fact-b activates rule-3 and
rule-4, then if fact-a is asserted before fact-b, rule-3 and rule-4 will be above rule-1
and rule-2 on the agenda. However, the position of rule-1 relative to rule-2 and
rule-3 relative to rule-4 will be arbitrary.

—CLIPS Reference Manual

The initial Drools implementation for the Depth strategy would not work for Manners without the
use of salience on the "make_path" rule. The CLIPS support team had this to say:

The default conflict resolution strategy for CLIPS, Depth, is different than the de-
fault conflict resolution strategy used by OPS5. Therefore if you directly translate
an OPS5 program to CLIPS, but use the default depth conflict resolution strategy,
you're only likely to get the correct behavior by coincidence. The LEX and MEA
conflict resolution strategies are provided in CLIPS to allow you to quickly convert
and correctly run an OPS5 program in CLIPS.

—Clips Support Forum

Investigation into the CLIPS code reveals there is undocumented functionality in the Depth strat-
egy. There is an accumulated time tag used in this strategy; it's not an extensively fact by fact
comparison as in the recency strategy, it simply adds the total of all the time tags for each acti-
vation and compares.

20.16.2.3. Rule "assignFirstSeat"

Once the context is changed to START_UP, activations are created for all asserted guest. Because
all activations are created as the result of a single Working Memory action, they all have the same

683

Examples

Activation time tag. The last asserted Guest object would have a higher fact time tag, and its
Activation would fire because it has the highest accumulated fact time tag. The execution order in
this rule has little importance, but has a big impact in the rule "Assign Seat". The activation fires
and asserts the first Seat i ng arrangement and a Pat h, and then sets the Cont ext attribute st at e
to create an activation for rule f i ndSeat i ng.

rul e assi gnFirst Seat when context : Context(state == Context.START_UP) guest
Guest () count : Count() t hen String guestNane = guest.get Nane();
Seating seating = new Seating(count.getValue(), 1, true, 1, guestNane, 1,

guest Nane) ; insert(seating); Path path = new Pat h(count.getVal ue(), 1,
guest Nane); insert(path); nodi fy(count) { setValue (count.getVal ue()
+1) } Systemout.println("assign first seat " + seating + " : " + path);

nmodi fy(context) { set St at e(Cont ext. ASSI GN_SEATS) } end
si gnFi r st Seat

when context : Context(state == Context.START_UP

) guest

Guest () count

Count ()

t hen String guestNanme =

guest . get Nane() ;
Seating seating
= new Seating(count.getValue(), 1, true, 1, guestName, 1,
guest Nane) ; insert(seating
)
Path path = new Path(count.getValue(), 1, guestNane
); insert(path
DE

modi fy(count) { setValue (count.getValue() + 1)

} Systemout.println("assign first seat : " + seating + " : " + path
) nodi fy(context)
{ set St at e(Cont ext . ASSI GN_SEATS
)
}

20.16.2.4. Rule "findSeating"

This rule determines each of the Seat i ng arrangements. The rule creates cross product solutions
for all asserted Seat i ng arrangements against all the asserted guests except against itself or any
already assigned chosen solutions.

rul e findSeating when context : Context(state == Context.ASSI GN_SEATS) $s
Seating(pathDone == true) $g1 : Cuest(name == $s.rightGuestName)
$g2 : CQuest(sex != $gl.sex, hobby == $gl. hobby) count : Count () not
(Path(id == $s.id, guestNane == $g2. nanme)) not (Chosen(id == $s.id, guestNane ==
$g2. nane, hobby == $g1. hobby)) then int rightSeat = $s. getRi ght Seat (); int seatld
= $s.getld(); int countValue = count.getVal ue(); Seating seating =
new Seati ng(countVal ue, seatld, false, rightSeat, $s. get Ri ght Guest Nane(),
rightSeat + 1, $g2.getName()); insert(seating); Pat h
path = new Pat h(countVal ue, rightSeat + 1, $g2.getName()); insert(path);
Chosen chosen = new Chosen(seatld, $g2.getName(), $gl.getHobby()); insert(chosen

684

Examples

) Systemerr.printin("find seating : " + seating + " : " + path +
' + chosen); nodi fy(count) {setValue(countValue + 1)}
nmodi fy(context) {setState(Context.MAKE PATH)}end
Seati ng
when context : Context(state == Context.ASSI GN_SEATS
) $s . Seating(pathDone == true
) $g1 : Quest(name == $s.right Guest Name
) $g2 : Quest(sex != $gl.sex, hobby == $gl1. hobby
) count
Count () not (Path(id == $s.id, guestName == $g2. nane)
) not (Chosen(id == $s.id, guestNanme == $g2. name, hobby == $gl. hobby)
)
t hen int rightSeat =
$s. get Ri ght Seat () ; int seatld =
$s.getld(); int countVal ue =

count . get Val ue() ;
Seating seating
= new Seating(countValue, seatld, false,
ri ght Seat, $s. get Ri ght Guest Nane(), rightSeat + 1, $g2. get Nane()
); insert(seating
)5
Path path = new Path(countVal ue, rightSeat + 1, $g2.get Name()
) insert(path
)
Chosen chosen = new Chosen(seatld, $g2.getNanme(), $gl.get Hobby()
); insert(chosen

); Systemerr.printin("find seating : " + seating + " : " + path
+ SRR

chosen) ; nodi fy(count) {setValue(countValue + 1

)} nodi fy(context) {setState(Context.MAKE_PATH

However, as can be seen from the printed results shown earlier, it is essential that only the Seat i ng
with the highest pi d cross product be chosen. How can this be possible if we have activations, of
the same time tag, for nearly all existing Seat i ng and Guest objects? For example, on the third
iteration of f i ndSeat i ng the produced activations will be as shown below. Remember, this is from
a very small data set, and with larger data sets there would be many more possible activated

Seat i ng solutions, with multiple solutions per pi d:

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, Is=2, In=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3]

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

685

Examples

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

The creation of all these redundant activations might seem pointless, but it must be remembered
that Manners is not about good rule design; it's purposefully designed as a bad ruleset to fully
stress-test the cross product matching process and the Agenda, which this clearly does. Notice
that each activation has the same time tag of 35, as they were all activated by the change in the
Cont ext object to ASSI GN_SEATS. With OPS5 and LEX it would correctly fire the activation with
the Seat i ng asserted last. With Depth, the accumulated fact time tag ensures that the activation
with the last asserted Seat i ng fires.

20.16.2.5. Rules "makePath" and "pathDone"

Rule nakePat h must always fire before pat hDone. A Pat h object is asserted for each Seat i ng
arrangement, up to the last asserted Seat i ng. Notice that the conditions in pat hDone are a subset
of those in nakePat h - so how do we ensure that makePat h fires first?

rul e makePat h

when
Cont ext (state == Cont ext. MAKE_PATH)
Seating(seatingld:id, seatingPid:pid, pathDone == false)
Path(id == seatingPid, pathGuestNane: guestNane, pathSeat:seat)
not Path(id == seatingld, guestNane == pat hGuest Nanme)

t hen
insert(new Path(seatingld, pathSeat, pathGuestNane));

end
rul e pat hDone when context : Context(state == Context.MAKE PATH) seating :
Seati ng(pat hDone == false) t hen nodi fy(seating) {setPathDone(true)}

nodi fy(context) {setState(Context.CHECK_DONE)}end
Done
when context : Context(state == Context.MAKE_PATH)

seating : Seating(pathDone == false)

then nodi fy(seating) {setPathDone(true)}

nodi fy(context) {setState(
Cont ext . CHECK_DONE) }

686

Examples

Make Path

Context

Path Done
Seating Path

state==MAKE_PATH

pathDone==true |

||II

modify Seating(pathDone = true)

Path

!

Path.id==Seating.pid |
Path.name=S5eating.In ,f'll
|llIIII

X

Path.id==Seating.id
Path.name=Seating.In

assert Path{ id=Seating.id,
name=Seating.ln,

seat=Path.seat)

ObjectTypeNode
Figure 20.42. Rete Diagram

. AlphaNade
m LeftinputAdapterNode

JainMode

MotMNode

AR
/O

Examples

Both rules end up on the Agenda in conflict and with identical activation time tags. However, the
accumulate fact time tag is greater for "Make Path" so it gets priority.

20.16.2.6. Rules "continue" and "areWeDone"

Rule ar eWDone only activates when the last seat is assigned, at which point both rules will be
activated. For the same reason that nekePat h always wins over pat h Done, ar eweDone will take
priority over rule cont i nue.

rul e areWeDone when context : Context(state == Context.CHECK DONE)
Last Seat (| ast Seat: seat) Seati ng(rightSeat == |ast Seat) t hen nodi fy(context)
{set St at e(Cont ext . PRI NT_RESULTS) } end
Done
when context : Context(state == Context. CHECK_DONE)
Last Seat (| ast Seat: seat
) Seating(rightSeat == |astSeat)

then nmodi fy(context) {setState(Context.PRI NT_RESULTS
)}

rul e continue when context : Context(state == Context.CHECK DONE) t hen
nodi fy(context) {setState(Context.ASSI GN SEATS)}end

tinue

when context : Context(state == Context. CHECK_DONE

)
t hen modi fy(context) {setState(Context.ASSI GN_SEATS

20.16.3. Output Summary

Assign First seat
=>[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
=>[fid:14:14]:[Path id=1, seat=1, guest=n5]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1 , pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]*

Assign Seating
=>[fid:15:17] :[Seating id=2 , pid=1 , done=false, Is=1, lg=n5, rs=2, rn=n4]

688

Examples

=>[fid:16:18]:[Path id=2, seat=2, guest=n4]
=>[fid:17:19]:[Chosen id=1, name=n4, hobbies=h1]

=>[ActivationCreated(21): rule=makePath
[fid:15:17] : [Seating id=2, pid=1, done=false, Is=1, In=n5, rs=2, rn=n4]
[fid:14:14] : [Path id=1, seat=1, guest=n5]*

==>[ActivationCreated(21): rule=pathDone
[Seating id=2, pid=1, done=false, Is=1, In=n5, rs=2, rn=n4]*

Make Path
=>[fid:18:22:[Path id=2, seat=1, guest=n5]]

Path Done

Continue Process

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:7:7]:[Guest name=n4, sex=f, hobbies=h3]

[fid:4:4] : [Guest name=n3, sex=m, hobbies=h3]*

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1], [fid:12:20] : [Count value=3]

=>[ActivationCreated(25): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, Inn4, rs=3, rn=n3]]
=>[fid:20:27]:[Path id=3, seat=3, guest=n3]]

=>[fid:21:28]:[Chosen id=2, name=n3, hobbies=h3}]

=>[ActivationCreated(30): rule=makePath
[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]
[fid:18:22]:[Path id=2, seat=1, guest=n5]*

=>[ActivationCreated(30): rule=makePath
[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]
[fid:16:18]:[Path id=2, seat=2, guest=n4]*

689

Examples

=>[ActivationCreated(30): rule=done
[fid:19:26]:[Seating id=3, pid=2, done=false, Is=2, In=n4, rs=3, rn=n3]*

Make Path
=>[fid:22:31]:[Path id=3, seat=1, guest=n5]

Make Path
=>[fid:23:32] [Path id=3, seat=2, guest=n4]

Path Done

Continue Processing

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, Is=2, In=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3], [fid:12:29]*

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1], [fid:1:1] : [Guest name=n1, sex=m,
hobbies=h1]

Assign Seating

=>[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]]
=>[fid:25:37]:[Path id=4, seat=4, guest=n2]]

=>[fid:26:38]:[Chosen id=3, name=n2, hobbies=h3]

==>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]
[fid:23:32]:[Path id=3, seat=2, guest=n4]*

==>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]
[fid:20:27]:[Path id=3, seat=3, guest=n3]*

=>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]
[fid:22:31]:[Path id=3, seat=1, guest=n5]*

690

Examples

=>[ActivationCreated(40): rule=done
[fid:24:36]:[Seating id=4, pid=3, done=false, Is=3, In=n3, rs=4, rn=n2]*

Make Path
=>fid:27:41:[Path id=4, seat=2, guest=n4]

Make Path
=>fid:28:42]:[Path id=4, seat=1, guest=n5]]

Make Path
=>fid:29:43]:[Path id=4, seat=3, guest=n3]]

Path Done

Continue Processing

=>[ActivationCreated(46): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, Is=1, In=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1], [fid:2:2]

[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(46): rule=findSeating

[fid:24:44]:[Seating id=4, pid=3, done=true, Is=3, In=n3, rs=4, rn=n2]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]*

=>[ActivationCreated(46): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, Is=1, In=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:30:47]:[Seating id=5, pid=4, done=false, Is=4, In=n2, rs=5, rn=n1]
=>[fid:31:48]:[Path id=5, seat=5, guest=n1]

=>[fid:32:49]:[Chosen id=4, name=n1, hobbies=h1]

20.17. Backward-Chaining

A backward-chaining rule system is goal-driven. This means the system starts with a conclusion
which the engine tries to satisfy. If it cannot do so it searches for sub-goals, that is, conclusions that
will complete part of the current goal. It continues this process until either the initial conclusion is
satisfied or there are no more unsatisfied sub-goals. Prolog is an example of a backward-chaining
engine.

691

Examples

Rule
Base 'I
\ Examine waorking memaory
e .| and goals to see if goals Working
e v are “"known” true in Memory
/ knowledge base
|
Goal -~

(retum false to recursive procedure)

K]
=
£la
= | m Returm - o
i;g True ¥
ul_
Al
= 2
d]l'vF
=5
13
3|8
a | =
|8 Retum
a = paes M- Mo
L&}
S
[}
L

Determine next possible

|
|
|
|
|
{' - False
I
I
I
I
I
I

For each rule rules to fire by checking
condition, recursively e conclusions and goals
backchain with

condition as goal.

Conflict
Resolution

Strategy

¥ Exit

All rem%

retums trua?

One or more goals failed, Check next matching rule

als found to be true, exist, returning true true

v

Figure 20.43. Backward Chaining Chart

20.17.1. Backward-Chaining Systems

Backward-Chaining is a feature recently added to the JBoss Rules Engine. This process is often
referred to as derivation queries, and it is not as common compared to reactive systems since

692

Examples

JBoss Rules is primarily reactive forward chaining. That is, it responds to changes in your data.
The backward-chaining added to the engine is for product-like derivations.

20.17.2. Cloning Transitive Closures

House
*Location("kitchen", "house") *Location("office ", "house")
*Location("desk", "office") *Location("chair ", "cffice")
*Location("lamp", "desk") *Location("computer," "desk")

*Location("drawer ", "desk")

*Iocation("key", "drawer")

Figure 20.44. Reasoning Graph

The previous chart demonstrates a House example of transitive items. A similar reasoning chart
can be created by implementing the following rules:

1. First, create some java rules to develop reasoning for transitive items. It inserts each of the
locations.

2. Next, create the Location class; it has the item and where it is located.

3. Type the rules for the House example as depicted below:

ksession.insert(new Location("office", "house"))
ksession.insert(new Location("kitchen", "house"));
ksession.insert(new Location("knife", "kitchen"));
ksession.insert(new Location("cheese", "kitchen"))
ksession.insert(new Location("desk", "office"))
ksession.insert(new Location("chair", "office"))
ksession.insert(new Location("conputer", "desk"));
ksession.insert(new Location("drawer", "desk"))

693

Examples

4. A transitive design is created in which the item is in its designated location such as a "desk"
located in an "office."

House

-

*Location("kitchen", "house") *Location("ocffice", "house")

*Location({"knife", "kitchen") #*Location("cheese" ‘"kitchen")

*Location("desk", "office") *Location('chair" K6 'office")

*Location("drawer", "desk") *Location{“computer“, "desk")

Figure 20.45. Transitive Reasoning Graph of a House

20.17.3. Defining a Query

1. Create a query to look at the data inserted into the rules engine:

query isContainedln(String x, String y) Location(x, y;) or (Location(z, y;) and
i sContainedln(x, z;))end
) Location(x, vy;

)

or (Location(z, y;) and isContainedin(x, z;)

Notice how the query is recursive and is calling "isContainedIn."

2. Create a rule to print out every string inserted into the system to see how things are implement-
ed. The rule should resemble the following format:

rule "go" salience 10

when

$s : String()
t hen

Systemout.printin($s)
end

3. Using Step 2 as a model, create a rule that calls upon the Step 1 query "isContainedin."”

694

Examples

rule "gol"
when
String(this == "gol")
i sCont ai nedl n("of fice", "house";)
t hen
Systemout.printin("office is in the house")
end

The "gol" rule will fire when the first string is inserted into the engine. That is, it asks if the item
"office" is in the location "house." Therefore, the Step 1 query is evoked by the previous rule when
the "gol" String is inserted.

4. Create the "gol," insert it into the engine, and call the fireAllRules.

ksession.insert("gol")
ksession.fireA |l Rul es();

gol
office is in the house

The --- line indicates the separation of the output of the engine from the firing of the "go" rule and
the "gol" rule.

20.17.4. Transitive Closure Example

1. Create a Transitive Closure by implementing the following rule:

rule "go2"
when
String(this == "go2")
i sCont ai nedl n("drawer", "house";)
t hen
Systemout.println("Drawer in the House")
end

2. Recall from the Cloning Transitive Closure's topic, there was no instance of "drawer" in "house."
"drawer" was located in "desk."

695

Examples

House

-

*Location("kitchen", "house") *Location("office", "house")

*Location("knife" 6 ‘"kitchen") #Location("cheese" , "kitchen")

*Location("desk",6 "office") *Location('chair" ‘office")

*Location("drawer", "desk") #*Location("computer ' , "desk")

Figure 20.46. Transitive Reasoning Graph of a Drawer

3. Use the previous query for this recursive information.

query isContainedln(String x, String y) Location(x, y;) or (Location(z, y;) and
isContainedin(x, z;))end
) Location(x, Vy;

)

or (Location(z, y;) and isContainedln(x, z;)

4. Create the "go2," insert it into the engine, and call the fireAllRules.

ksession.insert("go2");
ksession.fireAll Rul es();

go2
Drawer in the House

When the rule is fired, it correctly tells you "go2" has been inserted and that the "drawer" is in
the "house."

5. Check how the engine determined this outcome

e The query has to recurse down several levels to determine this.

« Instead of using Location(X, y;), The query uses the value of (z, y;) since "drawer" is not
in "house."

696

Examples

* The z is currently unbound which means it has no value and will return everything that is in
the argument.

« y is currently bound to "house," so z will return "office" and "kitchen."

« Information is gathered from "office" and checks recursively if the "drawer" is in the "office." The
following query line is being called for these parameters: isContainedIn (x ,z;)

There is no instance of "drawer" in "office;" therefore, it does not match. With z being unbound, it
will return data that is within the "office," and it will gather that z == desk.

i sCont ai nedl n(x==drawer, z==desk)

isContainedIn recurses three times. On the final recurse, an instance triggers of "drawer" in the
"desk."

Locati on(x==dr awer, y==desk)

This matches on the first location and recurses back up, so we know that "drawer" is in the "desk,"
the "desk" is in the "office," and the "office" is in the "house;" therefore, the "drawer" is in the
"house" and returns true.

20.17.5. Reactive Transitive Queries

1. Create a Reactive Transitive Query by implementing the following rule:

rule "go3"
when
String(this == "go3")
i sCont ai nedl n("key", "office";)
then
Systemout.println("Key in the Ofice");
end

Reactive Transitive Queries can ask a question even if the answer can not be satisfied. Later, if
it is satisfied, it will return an answer.

2. Use the same query for this reactive information.

query isContainedln(String x, String y) Location(x, vy;) or (Location(z, y;) and
isContainedin(x, z;))end

) Location(x, vy;

)

or (Location(z, y;) and isContainedln(x, z;)

697

Examples

3. Create the "go03," insert it into the engine, and call the fireAllRules.

ksession.insert("go3");
ksession.fireAl |l Rul es();

go3

The first rule that matches any String returns "go3" but nothing else is returned because there is no
answer; however, while "go3" is inserted in the system, it will continuously wait until it is satisfied.

4. Insert a new location of "key" in the "drawer":
ksession.insert(new Location("key", "drawer"));ksession.fireAllRules();---Key in the Ofice
DE

ksession.fireA | Rul es();
---Key in the

This new location satisfies the transitive closure because it is monitoring the entire graph. In addi-
tion, this process now has four recursive levels in which it goes through to match and fire the rule.

20.17.6. Queries with Unbound Arguments

1. Create a Query with Unbound Arguments by implementing the following rule:

rul e "go4"
when
String(this == "go4")
i sCont ai nedl n(thing, "office";)
then
Systemout.printin("thing" + thing + "is in the Ofice");
end

This rule is asking for everything in the "office," and it will tell everything in all the rows below. The
unbound argument (out variable thing) in this example will return every possible value; accordingly,
it is very similar to the z value used in the Reactive Transitive Query example.

2. Use the query for the unbound arguments.

query isContainedln(String x, String y) Location(x, y;) or (Location(z, y;) and
i sContainedln(x, z;))end

) Location(x, vy;

)

or (Location(z, y;) and isContainedin(x, z;)

3. Create the "go4," insert it into the engine, and call the fireAllRules.

698

Examples

ksession.insert("go4");
ksession.fireA | Rul es();

go4

thing Key is in the Ofice
thing Conputer is in the Ofice
thing Drawer is in the Ofice
thing Desk is in the Ofice
thing Chair is in the Ofice

When "go4" is inserted, it returns all the previous information that is transitively below "Office."

20.17.7. Multiple Unbound Arguments

1. Create a query with Mulitple Unbound Arguments by implementing the following rule:

rule "go5"
when
String(this == "go5")
i sCont ai nedl n(thing, location;)
then
Systemout.printin("thing" + thing + "is in" + location);
end

This rule is asking for everything in the "office,” and it will tell everything in all the rows below. The
unbound argument (out variable thing) in this example will return every possible value; accordingly,
it is very similar to the z value used in the Reactive Transitive Query example.

Both thing and location are unbound out variables, and without bound arguments, everything
is called upon.

2. Use the query for multiple unbound arguments.

query isContainedln(String x, String y) Location(x, y;) or (Location(z, y;) and
i sContainedln(x, z;))end

) Location(x, Vy;

)

or (Location(z, y;) and isContainedlin(x, z;)

3. Create the "go5," insert it into the engine, and call the fireAllRules.

ksession.insert("go5");
ksession.fireAl |l Rul es();
go5

thing Knife is in House
thing Cheese is in House

699

Examples

thing Key is in House
thing Conputer is in House
thing Drawer is in House
thing Desk is in House
thing Chair is in House
thing Key is in Ofice
thing Conputer is in Ofice
thing Drawer is in O fice
thing Key is in Desk
thing Office is in House
thing Conputer is in Desk
thing Knife is in Kitchen
thing Cheese is in Kitchen
thing Kitchen is in House
thing Key is in Drawer
thing Drawer is in Desk
thing Desk is in Ofice
thing Chair is in Ofice

When "go5" is called, it returns everything within everything.

700

	Drools Documentation
	Table of Contents
	
	Part I. Welcome
	Chapter 1. Introduction
	1.1. Introduction
	1.2. Getting Involved
	1.2.1. Sign up to jboss.org
	1.2.2. Sign the Contributor Agreement
	1.2.3. Submitting issues via JIRA
	1.2.4. Fork GitHub
	1.2.5. Writing Tests
	1.2.6. Commit with Correct Conventions
	1.2.7. Submit Pull Requests

	1.3. Installation and Setup (Core and IDE)
	1.3.1. Installing and using
	1.3.1.1. Dependencies and JARs
	1.3.1.2. Use with Maven, Gradle, Ivy, Buildr or Ant
	1.3.1.3. Runtime
	1.3.1.4. Installing IDE (Rule Workbench)
	1.3.1.4.1. Installing GEF (a required dependency)
	1.3.1.4.2. Installing GEF from zip file
	1.3.1.4.3. Installing Drools plug-in from zip file
	1.3.1.4.4. Drools Runtimes
	1.3.1.4.4.1. Defining a Drools runtime
	1.3.1.4.4.2. Selecting a runtime for your Drools project

	1.3.2. Building from source
	1.3.2.1. Getting the sources
	1.3.2.2. Building the sources

	1.3.3. Eclipse
	1.3.3.1. Importing Eclipse Projects

	Chapter 2. Release Notes
	2.1. New and Noteworthy in KIE Workbench 6.3.0 Beta 1
	2.1.1. Real Time Validation and Verification for the Decision Tables
	2.1.2. Improved DRL Editor
	2.1.3. Generation of JPA enabled Data Models

	2.2. New and Noteworthy in KIE Workbench 6.2.0
	2.2.1. Download Repository or Part of the Repository as a ZIP
	2.2.2. Project Editor permissions
	2.2.3. Unify validation style in Guided Decision Table Wizard.
	2.2.4. Improved Wizards
	2.2.5. Consistent behaviour of XLS, Guided Decision Tables and Guided Templates
	2.2.6. Improved Metadata Tab
	2.2.7. Improved Data Objects Editor
	2.2.8. Execution Server Management UI
	2.2.9. Social Activities
	2.2.10. Contributors Dashboard
	2.2.11. Package selector
	2.2.12. Improved visual consistency
	2.2.13. Guided Decision Tree Editor
	2.2.14. Create Repository Wizard
	2.2.15. Repository Structure Screen

	2.3. New and Noteworthy in Integration 6.2.0
	2.3.1. KIE Execution Server

	2.4. What is New and Noteworthy in Drools 6.1.0
	2.4.1. JMX support for KieScanner

	2.5. New and Noteworthy in KIE Workbench 6.1.0
	2.5.1. Data Modeler - round trip and source code preservation
	2.5.2. Data Modeler - improved annotations
	2.5.3. Standardization of the display of tabular data
	2.5.4. Generation of modify(x) {...} blocks

	2.6. New and Noteworthy in KIE API 6.0.0
	2.6.1. New KIE name
	2.6.2. Maven aligned projects and modules and Maven Deployment
	2.6.3. Configuration and convention based projects
	2.6.4. KieBase Inclusion
	2.6.5. KieModules, KieContainer and KIE-CI
	2.6.6. KieScanner
	2.6.7. Hierarchical ClassLoader
	2.6.8. Legacy API Adapter
	2.6.9. KIE Documentation

	2.7. What is New and Noteworthy in Drools 6.0.0
	2.7.1. PHREAK - Lazy rule matching algorithm
	2.7.2. Automatically firing timed rule in passive mode
	2.7.3. Expression Timers
	2.7.4. RuleFowGroup and AgendaGroups are merged

	2.8. New and Noteworthy in KIE Workbench 6.0.0
	2.9. New and Noteworthy in Integration 6.0.0
	2.9.1. CDI
	2.9.2. Spring
	2.9.3. Aries Blueprints
	2.9.4. OSGi Ready

	Chapter 3. Compatibility matrix

	Part II. KIE
	Chapter 4. KIE
	4.1. Overview
	4.1.1. Anatomy of Projects
	4.1.2. Lifecycles

	4.2. Build, Deploy, Utilize and Run
	4.2.1. Introduction
	4.2.2. Building
	4.2.2.1. Creating and building a Kie Project
	4.2.2.2. The kmodule.xml file
	4.2.2.3. Building with Maven
	4.2.2.4. Defining a KieModule programmatically
	4.2.2.5. Changing the Default Build Result Severity

	4.2.3. Deploying
	4.2.3.1. KieBase
	4.2.3.2. KieSessions and KieBase Modifications
	4.2.3.3. KieScanner
	4.2.3.4. Maven Versions and Dependencies
	4.2.3.5. Settings.xml and Remote Repository Setup

	4.2.4. Running
	4.2.4.1. KieBase
	4.2.4.2. KieSession
	4.2.4.3. KieRuntime
	4.2.4.3.1. KieRuntime
	4.2.4.3.1.1. Globals

	4.2.4.4. Event Model
	4.2.4.5. KieRuntimeLogger
	4.2.4.6. Commands and the CommandExecutor
	4.2.4.7. StatelessKieSession
	4.2.4.8. Marshalling
	4.2.4.9. Persistence and Transactions

	4.2.5. Installation and Deployment Cheat Sheets
	4.2.6. Build, Deploy and Utilize Examples
	4.2.6.1. Default KieSession
	4.2.6.2. Named KieSession
	4.2.6.3. KieBase Inheritence
	4.2.6.4. Multiple KieBases
	4.2.6.5. KieContainer from KieRepository
	4.2.6.6. Default KieSession from File
	4.2.6.7. Named KieSession from File
	4.2.6.8. KieModule with Dependent KieModule
	4.2.6.9. Programmaticaly build a Simple KieModule with Defaults
	4.2.6.10. Programmaticaly build a KieModule using Meta Models

	4.3. Security
	4.3.1. Security Manager
	4.3.1.1. How to define a KIE Policy

	Part III. Drools Runtime and Language
	Chapter 5. Hybrid Reasoning
	5.1. Artificial Intelligence
	5.1.1. A Little History
	5.1.2. Knowledge Representation and Reasoning
	5.1.3. Rule Engines and Production Rule Systems (PRS)
	5.1.4. Hybrid Reasoning Systems (HRS)
	5.1.5. Expert Systems
	5.1.6. Recommended Reading

	5.2. Rete Algorithm
	5.3. ReteOO Algorithm
	5.4. PHREAK Algorithm

	Chapter 6. User Guide
	6.1. The Basics
	6.1.1. Stateless Knowledge Session
	6.1.2. Stateful Knowledge Session
	6.1.3. Methods versus Rules
	6.1.4. Cross Products

	6.2. Execution Control
	6.2.1. Agenda
	6.2.2. Rule Matches and Conflict Sets.
	6.2.2.1. Cashflow Example
	6.2.2.2. Conflict Resolution
	6.2.2.3. Salience
	6.2.2.4. Agenda Groups
	6.2.2.5. Rule Flow

	6.2.3. Declarative Agenda

	6.3. Inference
	6.3.1. Bus Pass Example

	6.4. Truth Maintenance with Logical Objects
	6.4.1. Overview
	6.4.1.1. Bus Pass Example With Inference and TMS
	6.4.1.2. Important note: Equality for Java objects

	6.5. Decision Tables in Spreadsheets
	6.5.1. When to Use Decision Tables
	6.5.2. Overview
	6.5.3. How Decision Tables Work
	6.5.4. Spreadsheet Syntax
	6.5.4.1. Spreadsheet Structure
	6.5.4.2. Rule Set Entries
	6.5.4.3. Rule Tables
	6.5.4.4. Examples

	6.5.5. Creating and integrating Spreadsheet based Decision Tables
	6.5.6. Managing Business Rules in Decision Tables
	6.5.6.1. Workflow and Collaboration
	6.5.6.2. Using spreadsheet features

	6.5.7. Rule Templates

	6.6. Logging

	Chapter 7. Rule Language Reference
	7.1. Overview
	7.1.1. A rule file
	7.1.2. What makes a rule

	7.2. Keywords
	7.3. Comments
	7.3.1. Single line comment
	7.3.2. Multi-line comment

	7.4. Error Messages
	7.4.1. Message format
	7.4.2. Error Messages Description
	7.4.2.1. 101: No viable alternative
	7.4.2.2. 102: Mismatched input
	7.4.2.3. 103: Failed predicate
	7.4.2.4. 104: Trailing semi-colon not allowed
	7.4.2.5. 105: Early Exit

	7.4.3. Other Messages

	7.5. Package
	7.5.1. import
	7.5.2. global

	7.6. Function
	7.7. Type Declaration
	7.7.1. Declaring New Types
	7.7.1.1. Declaring enumerative types

	7.7.2. Declaring Metadata
	7.7.2.1. Predefined class level annotations
	7.7.2.1.1. @role(<fact | event>)
	7.7.2.1.2. @typesafe(<boolean>)
	7.7.2.1.3. @timestamp(<attribute name>)
	7.7.2.1.4. @duration(<attribute name>)
	7.7.2.1.5. @expires(<time interval>)
	7.7.2.1.6. @propertyChangeSupport
	7.7.2.1.7. @propertyReactive

	7.7.2.2. Predefined attribute level annotations
	7.7.2.2.1. @key
	7.7.2.2.2. @position

	7.7.3. Declaring Metadata for Existing Types
	7.7.4. Parametrized constructors for declared types
	7.7.5. Non Typesafe Classes
	7.7.6. Accessing Declared Types from the Application Code
	7.7.7. Type Declaration 'extends'
	7.7.8. Traits
	7.7.8.1. Cascading traits

	7.8. Rule
	7.8.1. Rule Attributes
	7.8.2. Timers and Calendars
	7.8.3. Left Hand Side (when) syntax
	7.8.3.1. What is the Left Hand Side?
	7.8.3.2. Pattern (conditional element)
	7.8.3.2.1. What is a pattern?
	7.8.3.2.2. Pattern binding

	7.8.3.3. Constraint (part of a pattern)
	7.8.3.3.1. What is a constraint?
	7.8.3.3.2. Property access on Java Beans (POJO's)
	7.8.3.3.3. Java expression
	7.8.3.3.4. Comma separated AND
	7.8.3.3.5. Binding variables
	7.8.3.3.6. Unification
	7.8.3.3.7. Grouped accessors for nested objects
	7.8.3.3.8. Inline casts and coercion
	7.8.3.3.9. Special literal support
	7.8.3.3.9.1. Date literal

	7.8.3.3.10. List and Map access
	7.8.3.3.11. Abbreviated combined relation condition
	7.8.3.3.12. Special DRL operators
	7.8.3.3.12.1. The operators < <= > >=
	7.8.3.3.12.2. Null-safe dereferencing operator
	7.8.3.3.12.3. The operator matches
	7.8.3.3.12.4. The operator not matches
	7.8.3.3.12.5. The operator contains
	7.8.3.3.12.6. The operator not contains
	7.8.3.3.12.7. The operator memberOf
	7.8.3.3.12.8. The operator not memberOf
	7.8.3.3.12.9. The operator soundslike
	7.8.3.3.12.10. The operator str
	7.8.3.3.12.11. The operators in and not in (compound value restriction)

	7.8.3.3.13. Inline eval operator (deprecated)
	7.8.3.3.14. Operator precedence

	7.8.3.4. Positional Arguments
	7.8.3.5. Fine grained property change listeners
	7.8.3.6. Basic conditional elements
	7.8.3.6.1. Conditional Element and
	7.8.3.6.2. Conditional Element or
	7.8.3.6.3. Conditional Element not
	7.8.3.6.4. Conditional Element exists

	7.8.3.7. Advanced conditional elements
	7.8.3.7.1. Conditional Element forall
	7.8.3.7.2. Conditional Element from
	7.8.3.7.3. Conditional Element collect
	7.8.3.7.4. Conditional Element accumulate
	7.8.3.7.4.1. Accumulate CE (preferred syntax)
	7.8.3.7.4.2. Alternate Syntax: single function with return type
	7.8.3.7.4.3. Accumulate with inline custom code

	7.8.3.8. Conditional Element eval
	7.8.3.9. Railroad diagrams

	7.8.4. The Right Hand Side (then)
	7.8.4.1. Usage
	7.8.4.2. The modify Statement

	7.8.5. Conditional named consequences
	7.8.6. A Note on Auto-boxing and Primitive Types

	7.9. Query
	7.10. Domain Specific Languages
	7.10.1. When to Use a DSL
	7.10.2. DSL Basics
	7.10.3. Adding Constraints to Facts
	7.10.4. Developing a DSL
	7.10.5. DSL and DSLR Reference

	Chapter 8. Complex Event Processing
	8.1. Complex Event Processing
	8.2. Drools Fusion
	8.3. Event Semantics
	8.4. Event Processing Modes
	8.4.1. Cloud Mode
	8.4.2. Stream Mode
	8.4.2.1. Role of Session Clock in Stream mode
	8.4.2.2. Negative Patterns in Stream Mode

	8.5. Session Clock
	8.5.1. Available Clock Implementations
	8.5.1.1. Real Time Clock
	8.5.1.2. Pseudo Clock

	8.6. Sliding Windows
	8.6.1. Sliding Time Windows
	8.6.2. Sliding Length Windows

	8.7. Streams Support
	8.7.1. Declaring and Using Entry Points

	8.8. Memory Management for Events
	8.8.1. Explicit expiration offset
	8.8.2. Inferred expiration offset

	8.9. Temporal Reasoning
	8.9.1. Temporal Operators
	8.9.1.1. After
	8.9.1.2. Before
	8.9.1.3. Coincides
	8.9.1.4. During
	8.9.1.5. Finishes
	8.9.1.6. Finished By
	8.9.1.7. Includes
	8.9.1.8. Meets
	8.9.1.9. Met By
	8.9.1.10. Overlaps
	8.9.1.11. Overlapped By
	8.9.1.12. Starts
	8.9.1.13. Started By

	Part IV. Drools Integration
	Chapter 9. Drools Commands
	9.1. API
	9.1.1. XStream
	9.1.2. JSON
	9.1.3. JAXB
	9.1.3.1. Using an XSD file to define the model
	9.1.3.2. Using a POJO model

	9.2. Commands supported
	9.2.1. BatchExecutionCommand
	9.2.2. InsertObjectCommand
	9.2.3. RetractCommand
	9.2.4. ModifyCommand
	9.2.5. GetObjectCommand
	9.2.6. InsertElementsCommand
	9.2.7. FireAllRulesCommand
	9.2.8. StartProcessCommand
	9.2.9. SignalEventCommand
	9.2.10. CompleteWorkItemCommand
	9.2.11. AbortWorkItemCommand
	9.2.12. QueryCommand
	9.2.13. SetGlobalCommand
	9.2.14. GetGlobalCommand
	9.2.15. GetObjectsCommand

	Chapter 10. CDI
	10.1. Introduction
	10.2. Annotations
	10.2.1. @KReleaseId
	10.2.2. @KContainer
	10.2.3. @KBase
	10.2.4. @KSession for KieSession
	10.2.5. @KSession for StatelessKieSession

	10.3. API Example Comparison

	Chapter 11. Integration with Spring
	11.1. Important Changes for Drools 6.0
	11.2. Integration with Drools Expert
	11.2.1. KieModule
	11.2.2. KieBase
	11.2.2.1. <kie:kbase>'s parameters as attributes:
	11.2.2.2. A kbase tag can contain only the following tags as children.
	11.2.2.3. <kie:kbase>'s definition example
	11.2.2.4. Spring Bean Scope (for KieBase and KieSession)

	11.2.3. IMPORTANT NOTE
	11.2.4. KieSessions
	11.2.4.1. <kie:ksession>'s parameters as attributes:
	11.2.4.2. Spring Bean Scope (for KieBase and KieSession)

	11.2.5. Kie:ReleaseId
	11.2.5.1. <kie:releaseId>'s parameters as attributes:

	11.2.6. Kie:Import
	11.2.6.1. Global Import
	11.2.6.2. Specific Import - ReleaseId

	11.2.7. Annotations
	11.2.7.1. @KReleaseId
	11.2.7.2. @KContainer
	11.2.7.3. @KBase
	11.2.7.4. @KSession for KieSession
	11.2.7.5. @KSession for StatelessKieSession
	11.2.7.6. IMPORTANT NOTE

	11.2.8. Event Listeners
	11.2.8.1. Defining Stand alone Listeners:
	11.2.8.1.1. Attributes:
	11.2.8.1.2. Nested Elements:
	11.2.8.1.3. Empty Tag : Declaration with no 'ref' and without a nested bean
	11.2.8.1.4. Mix and Match of different declaration styles
	11.2.8.1.5. Defining multiple listeners of the same type

	11.2.8.2. Defining a Group of listeners:
	11.2.8.2.1. Attributes:
	11.2.8.2.2. Nested Elements:
	11.2.8.2.3. Example:

	11.2.9. Loggers
	11.2.9.1. Defining a console logger:
	11.2.9.2. Defining a file logger:
	11.2.9.2.1. Closing a FileLogger

	11.2.10. Defining Batch Commands
	11.2.11. Persistence
	11.2.12. Leveraging Other Spring Features
	11.2.12.1. Using Spring Expressions (Spel)
	11.2.12.2. Using Spring Profiles

	11.3. Integration with jBPM Human Task
	11.3.1. How to configure Spring with jBPM Human task

	Chapter 12. Apache Camel Integration
	12.1. Camel

	Chapter 13. Drools Camel Server
	13.1. Introduction
	13.2. Deployment
	13.3. Configuration
	13.3.1. REST/Camel Services configuration
	13.3.1.1. RESTful service endpoint creation
	13.3.1.2. Camel Kie Policy & Context creation
	13.3.1.3. Knowledge Services configuration
	13.3.1.4. Test

	Chapter 14. JMX monitoring with RHQ/JON
	14.1. Introduction
	14.1.1. Enabling JMX monitoring in a Drools application
	14.1.2. Installing and running the RHQ/JON plugin

	Part V. Drools Workbench
	Chapter 15. Workbench
	15.1. Installation
	15.1.1. War installation
	15.1.2. Workbench data
	15.1.3. System properties

	15.2. Quick Start
	15.2.1. Add repository
	15.2.2. Add project
	15.2.3. Define Data Model
	15.2.4. Define Rule
	15.2.5. Build and Deploy

	15.3. Administration
	15.3.1. Administration overview
	15.3.2. Organizational unit
	15.3.3. Repositories
	15.3.3.1. Repository Editor

	15.4. Configuration
	15.4.1. User management
	15.4.2. Roles
	15.4.2.1. Admin
	15.4.2.2. Developer
	15.4.2.3. Analyst
	15.4.2.4. Business user
	15.4.2.5. Manager/Viewer-only User

	15.4.3. Restricting access to repositories
	15.4.4. Command line config tool
	15.4.4.1. Config Tool Modes
	15.4.4.2. Available Commands
	15.4.4.3. How to use

	15.5. Introduction
	15.5.1. Log in and log out
	15.5.2. Home screen
	15.5.3. Workbench concepts
	15.5.4. Initial layout

	15.6. Changing the layout
	15.6.1. Resizing
	15.6.2. Repositioning

	15.7. Authoring
	15.7.1. Artifact Repository
	15.7.2. Asset Editor
	15.7.3. Project Explorer
	15.7.3.1. Initial view
	15.7.3.2. Different views
	15.7.3.2.1. Project View examples
	15.7.3.2.2. Repository View examples

	15.7.3.3. Download Project or Repository
	15.7.3.4. Branch selector
	15.7.3.5. Copy, Rename, Delete and Download Actions

	15.7.4. Project Editor
	15.7.4.1. Build & Deploy
	15.7.4.2. Project Settings
	15.7.4.2.1. Project General Settings
	15.7.4.2.2. Dependencies
	15.7.4.2.3. Metadata

	15.7.4.3. Knowledge Base Settings
	15.7.4.3.1. Knowledge bases and sessions
	15.7.4.3.1.1. Knowledge base list
	15.7.4.3.1.2. Knowledge base properties
	15.7.4.3.1.3. Knowledge sessions

	15.7.4.3.2. Metadata

	15.7.4.4. Imports
	15.7.4.4.1. Import Suggestions
	15.7.4.4.2. Metadata

	15.7.5. Validation
	15.7.5.1. Problem Panel
	15.7.5.2. On demand validation

	15.7.6. Data Modeller
	15.7.6.1. First steps to create a data model
	15.7.6.2. Data Objects
	15.7.6.3. Properties & relationships
	15.7.6.4. Additional options
	15.7.6.4.1. Additional data object properties ("Data object tab")
	15.7.6.4.2. Additional field properties ("Field tab")

	15.7.6.5. Generate data model code.
	15.7.6.6. Using external models
	15.7.6.6.1. Dependency to a JAR file in local M2 repository
	15.7.6.6.1.1. Open the Project Editor for current project and select the Dependencies view.
	15.7.6.6.1.2. Click on the "Add" button to add a new dependency line.
	15.7.6.6.1.3. Complete the GAV for the JAR file already installed in local M2 repository.
	15.7.6.6.1.4. Save the project to update its dependencies.

	15.7.6.6.2. Dependency to a JAR file in current "Guvnor M2 repository".
	15.7.6.6.2.1. Open the Maven Artifact Repository editor.
	15.7.6.6.2.2. Browse your local file system and select the JAR file to be uploaded using the Browse button.
	15.7.6.6.2.3. Upload the file using the Upload button.
	15.7.6.6.2.4. Guvnor M2 repository files.
	15.7.6.6.2.5. Provide a GAV for the uploaded file (optional).
	15.7.6.6.2.6. Add dependency from repository.

	15.7.6.6.3. Using the external objects

	15.7.6.7. Roundtrip and concurrency
	15.7.6.7.1. No changes have been undertaken through the application
	15.7.6.7.2. Changes have been undertaken through the application

	15.7.7. Categories Editor
	15.7.7.1. Launching the Categories Editor
	15.7.7.2. Managing Categories
	15.7.7.3. Adding Categories to assets

	15.8. Embedding Workbench In Your Application
	15.9. Asset Management
	15.9.1. Asset Management Overview
	15.9.2. Managed vs Unmanaged Repositories
	15.9.2.1. Managed Repositories
	15.9.2.2. Unmanaged Repositories

	15.9.3. Asset Management Processes
	15.9.3.1. Configure Repository
	15.9.3.2. Promote Changes Process
	15.9.3.3. Build Process
	15.9.3.4. Release Process

	15.9.4. Usage Flow
	15.9.5. Repository Structure
	15.9.5.1. Single Project Managed Repository
	15.9.5.2. Multi Project Managed Repository
	15.9.5.3. Unmanaged Repository

	15.9.6. Managed Repositories Operations
	15.9.6.1. Branch Selector
	15.9.6.2. Project Operations
	15.9.6.3. Launch Assets Management Processes
	15.9.6.3.1. Launch the Configure Repository Process
	15.9.6.3.2. Launch the Promote Changes Process
	15.9.6.3.3. Launch the Release Process

	15.9.7. Remote APIs

	Chapter 16. Authoring Assets
	16.1. Creating a package
	16.1.1. Empty package
	16.1.2. Copy, Rename and Delete Packages

	16.2. Business rules with the guided editor
	16.2.1. Parts of the Guided Rule Editor
	16.2.2. The "WHEN" (left-hand side) of a Rule
	16.2.2.1. Adding Patterns
	16.2.2.2. Adding constraints

	16.2.3. The "THEN" (right-hand side) of a Rule
	16.2.4. Optional attributes
	16.2.4.1. Salience

	16.2.5. Pattern/Action toolbar
	16.2.6. User driven drop down lists
	16.2.7. Augmenting with DSL sentences
	16.2.8. A more complex example:

	16.3. Templates of assets/rules
	16.3.1. Creating a rule template
	16.3.2. Define the template
	16.3.3. Defining the template data
	16.3.3.1. Cell merging
	16.3.3.2. Cell grouping

	16.3.4. Generated DRL

	16.4. Guided decision tables (web based)
	16.4.1. Types of decision table
	16.4.1.1. Extended Entry
	16.4.1.2. Limited Entry

	16.4.2. Main components\concepts
	16.4.2.1. Navigation
	16.4.2.2. Cell merging
	16.4.2.3. Cell grouping
	16.4.2.4. Operation of "otherwise"
	16.4.2.5. Re-arranging columns

	16.4.3. Defining a web based decision table
	16.4.3.1. Manual creation
	16.4.3.1.1. Column configuration
	16.4.3.1.1.1. Utility columns
	16.4.3.1.1.2. Adding columns
	16.4.3.1.1.3. Simple column types
	16.4.3.1.1.3.1. Metadata
	16.4.3.1.1.3.2. Attributes
	16.4.3.1.1.3.3. Simple Condition
	16.4.3.1.1.3.4. Set the value of a field
	16.4.3.1.1.3.5. Set the value of a field on a new fact
	16.4.3.1.1.3.6. Delete an existing fact

	16.4.3.1.1.4. Advanced column types
	16.4.3.1.1.4.1. Condition BRL fragments
	16.4.3.1.1.4.2. Execute a Work Item
	16.4.3.1.1.4.3. Set the value of a field with a Work Item parameter
	16.4.3.1.1.4.4. Set the value of a field on a new Fact with a Work Item parameter
	16.4.3.1.1.4.5. Action BRL fragment

	16.4.3.2. Using a Wizard
	16.4.3.2.1. Selecting the wizard
	16.4.3.2.2. Summary page
	16.4.3.2.3. Add Fact Patterns page
	16.4.3.2.4. Add Constraints page
	16.4.3.2.5. Add Actions to update facts page
	16.4.3.2.6. Add Actions to insert facts page
	16.4.3.2.7. Columns to expand page

	16.4.4. Rule definition
	16.4.5. Audit Log
	16.4.6. Real Time Validation and Verification
	16.4.6.1. Redundancy
	16.4.6.2. Subsumption
	16.4.6.3. Conflicts
	16.4.6.4. Missing Columns

	16.5. Guided Decision Trees
	16.5.1. The initial editor layout
	16.5.2. First steps
	16.5.3. Editing Data Object nodes
	16.5.4. Editing Field Constraint nodes
	16.5.5. Editing Action nodes
	16.5.6. Managing the tree

	16.6. Spreadsheet decision tables
	16.7. Scorecards
	16.7.1. (a) Setup Parameters
	16.7.2. (b) Characteristics
	16.7.2.1. Creating Characterstics
	16.7.2.2. Creating Attributes

	16.8. Test Scenario
	16.8.1. Knowledge Session Selector
	16.8.2. Given Section
	16.8.3. Expect Section
	16.8.4. Global Section
	16.8.5. New Input Section

	16.9. Functions
	16.10. DSL editor
	16.11. Data enumerations (drop down list configurations)
	16.11.1. Advanced enumeration concepts

	16.12. Technical rules (DRL)

	Chapter 17. Workbench Integration
	17.1. REST
	17.1.1. Job calls
	17.1.2. Repository calls
	17.1.3. Organizational unit calls
	17.1.4. Maven calls
	17.1.5. REST summary

	Chapter 18. Workbench High Availability
	18.1.
	18.1.1. VFS clustering
	18.1.2. jBPM clustering

	Part VI. KIE Server
	Chapter 19. KIE Execution Server
	19.1. Introduction
	19.2. Installing the KIE Execution Server
	19.2.1. Installation details for different containers
	19.2.1.1. Tomcat 7.x/8.x
	19.2.1.2. WildFly 8.x

	19.3. Registering a server
	19.4. Creating a Kie Container
	19.5. Managing Containers
	19.5.1. Starting a Container
	19.5.2. Stopping and Deleting a Container
	19.5.3. Updating a Container

	19.6. REST API
	19.6.1. [GET] /
	19.6.2. [POST] /
	19.6.3. [GET] /containers
	19.6.4. ⁠[GET] /containers/{id}
	19.6.5. [PUT] /containers/{id}
	19.6.6. [DELETE] /containers/{id}
	19.6.7. [POST] /containers/{id}
	19.6.8. [GET] /containers/{id}/release-id
	19.6.9. [POST] /containers/{id}/release-id
	19.6.10. [GET] /containers/{id}/scanner
	19.6.11. [POST] /containers/{id}/scanner

	Part VII. Drools Examples
	Chapter 20. Examples
	20.1. Getting the Examples
	20.2. Hello World
	20.3. State Example
	20.3.1. Understanding the State Example

	20.4. Fibonacci Example
	20.5. Banking Tutorial
	20.6. Pricing Rule Decision Table Example
	20.6.1. Executing the example
	20.6.2. The decision table

	20.7. Pet Store Example
	20.8. Honest Politician Example
	20.9. Sudoku Example
	20.9.1. Sudoku Overview
	20.9.2. Running the Example
	20.9.3. Java Source and Rules Overview
	20.9.4. Sudoku Validator Rules (validate.drl)
	20.9.5. Sudoku Solving Rules (sudoku.drl)

	20.10. Number Guess
	20.11. Conway's Game Of Life
	20.12. Invaders
	20.12.1. Invaders1Main
	20.12.2. Invaders2Main
	20.12.3. Invaders3Main
	20.12.4. Invaders4Main
	20.12.5. Invaders5Main
	20.12.6. Invaders6Main
	20.12.7. Invaders4Main

	20.13. Adventures with Drools
	20.13.1. Using the game.
	20.13.2. The code

	20.14. Pong
	20.15. Wumpus World
	20.16. Miss Manners and Benchmarking
	20.16.1. Introduction
	20.16.1.1. BenchMarking
	20.16.1.2. Miss Manners Execution Flow
	20.16.1.3. The Data and Results

	20.16.2. In depth Discussion
	20.16.2.1. Cheating
	20.16.2.2. Conflict Resolution
	20.16.2.3. Rule "assignFirstSeat"
	20.16.2.4. Rule "findSeating"
	20.16.2.5. Rules "makePath" and "pathDone"
	20.16.2.6. Rules "continue" and "areWeDone"

	20.16.3. Output Summary

	20.17. Backward-Chaining
	20.17.1. Backward-Chaining Systems
	20.17.2. Cloning Transitive Closures
	20.17.3. Defining a Query
	20.17.4. Transitive Closure Example
	20.17.5. Reactive Transitive Queries
	20.17.6. Queries with Unbound Arguments
	20.17.7. Multiple Unbound Arguments

